
When Will a Genetic Algorithm
Outperform Hill Climbing?

Melanie Mitchell
Santa Fe Institute

1660 Old Pecos Trail, Suite A
Santa Fe, NM 87501

John H. HoUand
Dept. of Psychology

University of Michigan
Ann Arbor, MI 48109

Stephanie Forrest
Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

Abstract

We analyze a simple hill-climbing algorithm (RMHC) that was pre­
viously shown to outperform a genetic algorithm (GA) on a simple
"Royal Road" function. We then analyze an "idealized" genetic
algorithm (IGA) that is significantly faster than RMHC and that
gives a lower bound for GA speed. We identify the features of the
IGA that give rise to this speedup, and discuss how these features
can be incorporated into a real GA.

1 INTRODUCTION

Our goal is to understand the class of problems for which genetic algorithms (GA)
are most suited, and in particular, for which they will outperform other search
algorithms. Several studies have empirically compared GAs with other search and
optimization methods such as simple hill-climbing (e.g., Davis, 1991), simulated
annealing (e.g., Ingber & Rosen, 1992), linear, nonlinear, and integer programming
techniques, and other traditional optimization techniques (e.g., De Jong, 1975).
However, such comparisons typically compare one version of the GA with a second
algorithm on a single problem or set of problems, often using performance criteria
which may not be appropriate. These comparisons typically do not identify the
features that led to better performance by one or the other algorithm, making it
hard to distill general principles from these isolated results. In this paper we look in
depth at one simple hill-climbing method and an idealized form of the GA, in order
to identify some general principles about when and why a GA will outperform hill
climbing.

51

52 Mitchell, Holland, and Forrest

81 = 11111111·· j C1 =8
82 = ········11111111·· j C2 = 8
83 = ················11111111······························ j C3 =8
84 = ························11111111······················ ; C4 =8
85 = ································11111111················ ; Cs = 8
86 = ··11111111······ ; C6 =8
87 = ··11111111· ; C7 = 8 8S = .. ··11111111; Cs = 8
8~t=11

Figure 1: Royal Road function Rl.

In previous work we have developed a class of fitness landscapes (the "Royal Road"
functions; Mitchell, Forrest, & Holland, 1992; Forrest & Mitchell, 1993) designed to
be the simplest class containing the features that are most relevant to the perfor­
mance of the GA. One of our purposes in developing these landscapes is to carry
out systematic comparisons with other search methods.

A simple Royal Road function, Rl , is shown in Figure 1. Rl consists of a list of
partially specified bit strings (schemas) Si in which '*' denotes a wild card (either
o or 1). Each schema 8, is given with a coefficient Ci. The order of a schema is
the number of defined (non-'*') bits. A bit string x is said to be an instance of a
schema 8, x E 8, if x matches s in the defined positions. The fitness Rl(X) of a bit
string x is defined as follows:

~ {I if x E Si
Rl(X) = ~ CiOi(X), where o,(x) = 0 otherwise. ,

For example, if x is an instance of exactly two of the order-8 schemas, Rl (x) = 16.
Likewise, Rl (111 ... 1) = 64.

The Building Block Hypothesis (Holland, 1975/1992) states that the GA works well
w hen instances of low-order, short schemas ("building blocks") that confer high fit­
ness can be recombined to form instances of larger schemas that confer even higher
fitness. Given this hypothesis, we initially expected that the building-block struc­
ture of Rl would layout a "royal road" for the GA to follow to the optimal string.
We also expected that simple hill-climbing schemes would perform poorly since a
large number of bit positions must be optimized simultaneously in order to move
from an instance of a lower-order schema (e.g., 11111111** ... *) to an instance of a
higher-order intermediate schema (e.g., 11111111*****·*·11111111** ... *). How­
ever both these expectations were overturned (Forrest & Mitchell, 1993). In our
experiments, a simple GA (using fitness-proportionate selection with sigma scaling,
single-point crossover, and point mutation) optimized Rl quite slowly, at least in
part because of "hitchhiking": once an instance of a higher-order schema is discov­
ered, its high fitness allows the schema to spread quickly in the population, with Os
in other positions in the string hitchhiking along with the Is in the schema's defined
positions. This slows down the discovery of schemas in the other positions, espe­
cially those that are close to the highly fit schema's defined positions. Hitchhiking
can in general be a serious bottleneck for the GA, and we observed similar effects

When Will a Genetic Algorithm Outperform Hill Climbing? S3

Table 1: Mean and median number of function evaluations to find the optimum
string over 200 runs of the GA and of various hill-climbing algorithms on R1. The
standard error is given in parentheses.

in several variations of our original GA.

Our other expectation-that the GA would outperform simple hill-climbing on
these functions-was also proved wrong. Forrest and Mitchell (1993) compared
the GA's performance on a variation of Rl with three different hill-climbing meth­
ods: steepest ascent hill-climbing (SAHC), next-ascent hill-climbing (NAHC), and a
zero-temperature Monte Carlo method, which Forrest and Mitchell called ''random
mutation hill-climbing" (RMHC). In RMHC, a string is chosen at random and its
fitness is evaluated. The string is then mutated at a randomly chosen single locus,
and the new fitness is evaluated. If the mutation leads to an equal or higher fitness,
the new string replaces the old string. This procedure is iterated until the optimum
has been found or a maximum number of function evaluations has been performed.

Here we have repeated these experiments for R1. The results (similar to those given
for R2 in Forrest & Mitchell, 1993) are given in Table 1. We compare the mean
and median number of function evaluations to find the optimum string rather than
mean and median absolute run time, because in almost all GA applications (e.g.,
evolving neural-network architectures), the time to perform a function evaluation
vastly dominates the time required to execute other parts of the algorithm. For this
reason, we consider all parts of the algorithm excluding the function evaluations to
take negligible time.

The results on SAHC and NAHC were as expected-while the GA found the opti­
mum on RI in an average of 61,334 function evaluations, neither SAHC nor NAHC
ever found the optimum within the maximum of 256,000 function evaluations. How­
ever, RMH C found the optimum on Rl in an average of 6179 function evaluations­
nearly a factor often faster than the GA. This striking difference on landscapes orig­
inally designed to be "royal roads" for the GA underscores the need for a rigorous
answer to the question posed earlier: "Under what conditions will a GA outperform
other search algorithms, such as hill climbing?"

2 ANALYSIS OF RMHC AND AN IDEALIZED GA

To begin to answer this question, we analyzed the RMHC algorithm with respect to
R1 • Suppose the fitness function c,onsists of N adjacent blocks of K Is each (in RI,
N = 8 and K = 8). What is the expected time (number of function evaluations)
E(K, N) to find the optimum string of allIs? We can first ask a simpler question:
what is the expected time E(K, 1) to find a single block of K Is? A Markov-chain
analysis (not given here) yields E(K, 1) slightly larger than 2K , converging slowly
to 2K from above as K -+ 00 (Richard Palmer, personal communication). For

54 Mitchell, Holland, and Forrest

example, for K = 8, E(K, 1) = 301.2.

Now suppose we want RMHC to discover a string with N blocks of K Is. The
time to discover a first block of K Is is E(K, 1), but, once it has been found, the
time to discover a second block is longer, since many of the function evaluations are
"wasted" on testing mutations inside the first block. The proportion of non-wasted
mutations is (K N - K) / K N; this is the proportion of mutations that occur in the
KN - K positions outside the first block. The expected time E(K, 2) to find a
second block is E(K, 1) + E(K, l)[KN/(KN - K)]. Similarly, the total expected
time is:

E(K,N) =
N N

E(K, 1) + E(K, 1) N _ 1 + ... + E(K, 1) N _ (N _ 1)

[1 1 1] E(K,l)N 1 + "2 + 3 + ... + N . (1)

(The actual value may be a bit larger, since E(K,l) is the expected time to the first
block, whereas E(K, N) depends on the worst time for the N blocks.) Expression
(1) is approximately E(K, l)N(logN + r), where r is Euler's constant. For K =
8, N = 8, the value of expression (1) is 6549. When we ran RMHC on the Rl
function 200 times, the average number of function evaluations to the optimum was
6179, which agrees reasonably well with the expected value.

Could a GA ever do better than this? There are three reasons why we might expect
a GA to perform well on Rl. First, at least theoretically the GA is fast because
of implicit parallelism (Holland, 1975/1992): each string in the population is an
instance of many different schemas, and if the population is large enough and is
initially chosen at random, a large number of different schemas-many more than
the number of strings in the population-are being sampled in parallel. This should
result in a quick search for short, low-order schemas that confer high fitness. Second,
fitness-proportionate reproduction under the GA should conserve instances of such
schemas. Third, a high crossover rate should quickly combine instances oflow-order
schemas on different strings to create instances of longer schemas that confer even
higher fitness. Our previous experiments (Forrest & Mitchell, 1993) showed that
the simple GA departed from this "in principle" behavior. One major impediment
was hitchhiking, which limited implicit parallelism by fixing certain schema regions
sub optimally. But if the GA worked exactly as described above, how quickly could
it find the optimal string of Rl?

To answer this question we consider an "idealized genetic algorithm" (IGA) that
explicitly has the features described above. The IGA knows ahead of time what the
desired schemas are, and a "function evaluation" is the determination of whether a
given string contains one or more of them. In the IGA, at each time step a single
string is chosen at random, with uniform probability for each bit. The string is
"evaluated" by determining whether it is an instance of one or more of the desired
schemas. The first time such a string is found, it is sequestered. At each subsequent
discovery of an instance of one or more not-yet-discovered schemas the new string
is instantaneously crossed over with the sequestered string so that the sequestered
string contains all the desired schemas that have been discovered so far.

This procedure is unusable in practice, since it requires knowing a priori which
schemas are relevant, whereas in general an algorithm such as the GA or RMHC

When Will a Genetic Algorithm Outperform Hill Climbing? 55

directly measures the fitness of a string, and does not know ahead of time which
schemas contribute to high fitness. However, the idea behind the GA is to do
implicitly what the IGA is able to do explicitly. This idea will be elaborated below.

Suppose again that our desired schemas consist of N blocks of K 1s each. What is
the expected time (number of function evaluations) until the saved string contains
all the desired schemas? Solutions have been suggested by G. Huber (personal com­
munication), and A. Shevoroskin (personal communication), and a detailed solution
is given in (Holland, 1993). The main idea is to note that the probability of finding
a single desired block 8 on a random string is p = 1/2K, and the probability of
finding s by time t is 1 - (1 - p)t. Then the probability PN(t) that all N blocks
have been found by time tis:

PN(t) = (1 - (1 - p)t)N,

and the probability PN(t) that all N blocks are found at exactly time tis:

PN(t) = [1- (1- p)t]N - [1- (1- p)t-l]N.

The expected time is then
00

EN = 2:t ([1- (1- p)t]N - [1- (1- p)t-l]N).
1

This sum can be expanded and simplified, and with some work, along with the
approximation (1-p)n ~ 1-np for small p, we obtain the following approximation:

N 1
EN ~ (lip) I:; ~ 2K(logN + 1)·

n=l

The major point is that the IGA gives an expected time that is on the order of
2K log N, where RMHC gives an expected time that is on the order of 2K N log N,
a factor of N slower. This kind of analysis can help us predict how and when the
G A will outperform hill climbing.

What makes the IGA faster than RMHC? A primary reason is that the IGA per­
fectly implements implicit parallelism: each new string is completely independent
of the previous one, so new samples are given independently to each schema region.
In contrast, RMHC moves in the space of strings by single-bit mutations from an
original string, so each new sample has all but one of the same bits as the previ­
ous sample. Thus each new string gives a new sample to only one schema region.
The IGA spends more time than RMHC constructing new samples, but since we
are counting only function evaluations, we ignore the construction time. The IGA
"cheats" on each function evaluation, since it knows exactly the desired schemas,
but in this way it gives a lower bound on the number of function evaluations that
the GA will need on this problem.

Independent sampling allows for a speed-up in the IGA in two ways: it allows for
the possibility of more than one desirable schema appearing simultaneously on a
given sample, and it also means that there are no wasted samples as there are
in RMHC. Although the comparison we have made is with RMHC, the IGA will
also be significantly faster on Rl (and similar landscapes) than any hill-climbing

56 Mitchell, Holland, and Forrest

Levell: 81 82 83 8, 85 8S 81 8a 89 810 811 812 813 8H 815 81S

Level 2: (81 82) (83 8,) (85 8S) (81 8a) (89 810) (811 812) (813 81') (815 81S)

Level 3: (81 82 83 8,) (85 8S 81 8a) (89 810 811 812) (813 8H 815 81S)

Level 4: (81 82 83 8, 85 8S 81 8a) (89 810 811 812 813 8H 815 81S)

Figure 2: Royal Road Function R4.

method that works by mutating single bits (or a small number of bits) to obtain
new samples.

The hitchhiking effects described earlier also result in a loss of independent samples
for the real GA. The goal is to have the real GA, as much as possible, approximate
the IGA. Of course, the IGA works because it explicitly knows what the desired
schemas are; the real GA does not have this information and can only estimate
what the desired schemas are by an implicit sampling procedure. But it is possible
for the real GA to approximate a number of the features of the IGA. Independent
samples: The population size has to be large enough, the selection process has to
be slow enough, and the mutation rate has to be sufficient to make sure that no
single locus is fixed at a single value in every (or even a large majority) of strings in
the population. Sequestering desired schemas: Selection has to be strong enough to
preserve desired schemas that have been discovered, but it also has to be slow enough
(or, equivalently, the relative fitness of the non-overlapping desirable schemas has
to be small enough) to prevent significant hitchhiking on some highly fit schemas,
which can crowd out desired schemas in other parts of the string. Instantaneous
crossover: The crossover rate has to be such that the time for a crossover to occur
that combines two desired schemas is small with respect to the discovery time for
the desired schemas. Speed-up over RMHC: The string length (a function of N) has
to be large enough to make the N speed-up factor significant.

These mechanisms are not all mutually compatible (e.g., high mutation works
against sequestering schemas), and thus must be carefully balanced against one
another. A discussion of how such a balance might be achieved is given in Holland
(1993).

3 RESULTS OF EXPERIMENTS

As a first step in exploring these balances, we designed R3, a variant of our previous
function R2 (Forrest & Mitchell, 1993), based on some of the features described
above. In R3 the desired schemas are 81-88 (shown in Fig. 1) and combinations
of them, just as in R2. However, in R3 the lowest-level order-8 schemas are each
separated by "introns" (bit positions that do not contribute to fitness-see Forrest
& Mitchell, 1993; Levenick, 1991) of length 24.

In R3, a string that is not an instance of any desired schema receives fitness 1.0.
Every time a new level is reached-i.e., a string is found that is an instance of one
or more schemas at that level-a small increment u is added to the fitness. Thus
strings at level 1 (that are instances of at least one level-l schema) have fitness
1 + u, strings at level 2 have fitness 1 + 2u, etc. For our experiments we set u = 0.2.

When Will a Genetic Algorithm Outperfonn Hill Climbing? 57

Table 2: R4: Mean function evaluations (over 37 runs) to attain each level for
the GA and for RMHC. In the GA runs, the number of function evaluations is
sampled every 500 evaluations, so each value is actually an upper bound for an
interval of length 500. The standard errors are in parentheses. The percentage of
runs which reached each level is shown next to the heading "% runs." Only runs
which successfully reached a given level were included in the function evaluation
calculations for that level.

The purpose of the introns was to help maintain independent samples in each schema
position by preventing linkage between schema positions. The independence of
samples was also helped by using a larger population (2000) and the much slower
selection scheme given by the function. In preliminary experiments on R3 (not
shown) hitchhiking in the GA was reduced significantly, and the population was
able to maintain instances of all the lowest-level schemas throughout each run.

Next, we studied R4 (illustrated in Figure 2). R4 is identical to R3, except that it
does not have introns. Further, R4 is defined over 128-bit strings, thus doubling the
size of the problem. In preliminary runs on R4, we used a population size of 500,
a mutation rate of 0.005 (mutation always flips a bit), and multipoint crossover,
where the number of crossover points for each pair of parents was selected from a
Poisson distribution with mean 2.816.

Table 2 gives the mean number of evaluations to reach levels 1, 2, and 3 (neither
algorithm reached level 4 within the maximum of 106 function evaluations). As
can be seen, the time to reach level one is comparable for the two algorithms, but
the GA is much faster at reaching levels 2 and 3. Further, the GA discovers level
3 approximately twice as often as RMHC. As was said above, it is necessary to
balance the maintenance of independent samples with the sequestering of desired
schemas. These preliminary results suggest that R4 does a better job of maintaining
this balance than the earlier Royal Road functions. Working out these balances in
greater detail is a topic of future work.

4 CONCLUSION

We have presented analyses of two algorithms, RMHC and the IGA, and have used
the analyses to identify some general principles of when and how a genetic algorithm
will outperform hill climbing. We then presented some preliminary experimental
results comparing the GA and RMHC on a modified Royal Road landscape. These
analyses and results are a further step in achieving our original goals-to design the
simplest class of fitness landscapes that will distinguish the GA from other search
methods, and to characterize rigorously the general features of a fitness landscape
that make it suitable for a GA.

S8 Mitchell, Holland, and Forrest

Our modified Royal Road landscape R4, like Rl, is not meant to be a realistic
example of a problem to which one might apply a GA. Rather, it is meant to be
an idealized problem in which certain features most relevant to GAs are explicit,
so that the GA's performance can be studied in detail. Our claim is that in order
to understand how the GA works in general and where it will be most useful, we
must first understand how it works and where it will be most useful on simple yet
carefully designed landscapes such as these. The work reported here is a further
step in this direction.

Acknowledgments

We thank R. Palmer for suggesting the RMHC algorithm and for sharing his careful
analysis with us, and G. Huber for his assistance on the analysis of the IGA. We
also thank E. Baum, L. Booker, T. Jones, and R. Riolo for helpful comments and
discussions regarding this work. We gratefully acknowledge the support of the Santa
Fe Institute's Adaptive Computation Program, the Alfred P. Sloan Foundation
(grant B1992-46), and the National Science Foundation (grants IRI-9157644 and
IRI-9224912).

References

L. D. Davis (1991). Bit-climbing, representational bias, and test suite design. In R.
K. Belew and L. B. Booker (eds.), Proceedings of the Fourth International Confer­
ence on Genetic Algorithms, 18-23. San Mateo, CA: Morgan Kaufmann.

K. A. De Jong (1975). An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. Unpublished doctoral dissertation. University of Michigan, Ann Arbor,
MI.

S. Forrest and M. Mitchell (1993). Relative building-block fitness and the building­
block hypothesis. In D. Whitley (ed.), Foundations of Genetic Algorithms 2, 109-
126. San Mateo, CA: Morgan Kaufmann.

J. H. Holland (1975/1992). Adaptation in Natural and Artificial Systems. Cam­
bridge, MA: MIT Press. (First edition 1975, Ann Arbor: University of Michigan
Press.)

J. H. Holland (1993). Innovation in complex adaptive systems: Some mathematical
sketches. Working Paper 93-10-062, Santa Fe Institute, Santa Fe, NM.

L. Ingber and B. Rosen (1992). Genetic algorithms and very fast simulated rean­
nealing: A comparison. Mathematical Computer Modelling, 16 (11),87-100.

J. R. Levenick (1991). Inserting introns improves genetic algorithm success rate:
Taking a cue from biology. In R. K. Belew and L. B. Booker (eds.), Proceedings of
the Fourth International Conference on Genetic Algorithms, 123-127. San Mateo,
CA: Morgan Kaufmann.

M. Mitchell, S. Forrest, and J. H. Holland (1992). The royal road for genetic algo­
rithms: Fitness landscapes and GA performance. In F. J. Varela and P. Bourgine
(eds.), Proceedings of the First European Conference on Artificial Life, 245-254.
Cambridge, MA: MIT Press.

