
When Will a Genetic Algorithm 
Outperform Hill Climbing? 

Melanie Mitchell 
Santa Fe Institute 

1660 Old Pecos Trail, Suite A 
Santa Fe, NM 87501 

John H. HoUand 
Dept. of Psychology 

University of Michigan 
Ann Arbor, MI 48109 

Stephanie Forrest 
Dept. of Computer Science 
University of New Mexico 
Albuquerque, NM 87131 

Abstract 

We analyze a simple hill-climbing algorithm (RMHC) that was pre­
viously shown to outperform a genetic algorithm (GA) on a simple 
"Royal Road" function. We then analyze an "idealized" genetic 
algorithm (IGA) that is significantly faster than RMHC and that 
gives a lower bound for GA speed. We identify the features of the 
IGA that give rise to this speedup, and discuss how these features 
can be incorporated into a real GA. 

1 INTRODUCTION 

Our goal is to understand the class of problems for which genetic algorithms (GA) 
are most suited, and in particular, for which they will outperform other search 
algorithms. Several studies have empirically compared GAs with other search and 
optimization methods such as simple hill-climbing (e.g., Davis, 1991), simulated 
annealing (e.g., Ingber & Rosen, 1992), linear, nonlinear, and integer programming 
techniques, and other traditional optimization techniques (e.g., De Jong, 1975). 
However, such comparisons typically compare one version of the GA with a second 
algorithm on a single problem or set of problems, often using performance criteria 
which may not be appropriate. These comparisons typically do not identify the 
features that led to better performance by one or the other algorithm, making it 
hard to distill general principles from these isolated results. In this paper we look in 
depth at one simple hill-climbing method and an idealized form of the GA, in order 
to identify some general principles about when and why a GA will outperform hill 
climbing. 
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81 = 11111111·············································· .......... j C1 =8 
82 = ········11111111·········································· ...... j C2 = 8 
83 = ················11111111······························ .......... j C3 =8 
84 = ························11111111······················ .......... ; C4 =8 
85 = ································11111111················ ........ ; Cs = 8 
86 = ········································11111111······ .......... ; C6 =8 
87 = ················································11111111· ....... ; C7 = 8 8S = ...................................................... ··11111111; Cs = 8 
8~t=1111111111111111111111111111111111111111111111111111111111111111 

Figure 1: Royal Road function Rl. 

In previous work we have developed a class of fitness landscapes (the "Royal Road" 
functions; Mitchell, Forrest, & Holland, 1992; Forrest & Mitchell, 1993) designed to 
be the simplest class containing the features that are most relevant to the perfor­
mance of the GA. One of our purposes in developing these landscapes is to carry 
out systematic comparisons with other search methods. 

A simple Royal Road function, Rl , is shown in Figure 1. Rl consists of a list of 
partially specified bit strings (schemas) Si in which '*' denotes a wild card (either 
o or 1). Each schema 8, is given with a coefficient Ci. The order of a schema is 
the number of defined (non-'*') bits. A bit string x is said to be an instance of a 
schema 8, x E 8, if x matches s in the defined positions. The fitness Rl(X) of a bit 
string x is defined as follows: 

~ {I if x E Si 
Rl(X) = ~ CiOi(X), where o,(x) = 0 otherwise. , 

For example, if x is an instance of exactly two of the order-8 schemas, Rl (x) = 16. 
Likewise, Rl (111 ... 1) = 64. 

The Building Block Hypothesis (Holland, 1975/1992) states that the GA works well 
w hen instances of low-order, short schemas ("building blocks") that confer high fit­
ness can be recombined to form instances of larger schemas that confer even higher 
fitness. Given this hypothesis, we initially expected that the building-block struc­
ture of Rl would layout a "royal road" for the GA to follow to the optimal string. 
We also expected that simple hill-climbing schemes would perform poorly since a 
large number of bit positions must be optimized simultaneously in order to move 
from an instance of a lower-order schema (e.g., 11111111** ... *) to an instance of a 
higher-order intermediate schema (e.g., 11111111*****·*·11111111** ... *). How­
ever both these expectations were overturned (Forrest & Mitchell, 1993). In our 
experiments, a simple GA (using fitness-proportionate selection with sigma scaling, 
single-point crossover, and point mutation) optimized Rl quite slowly, at least in 
part because of "hitchhiking": once an instance of a higher-order schema is discov­
ered, its high fitness allows the schema to spread quickly in the population, with Os 
in other positions in the string hitchhiking along with the Is in the schema's defined 
positions. This slows down the discovery of schemas in the other positions, espe­
cially those that are close to the highly fit schema's defined positions. Hitchhiking 
can in general be a serious bottleneck for the GA, and we observed similar effects 
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Table 1: Mean and median number of function evaluations to find the optimum 
string over 200 runs of the GA and of various hill-climbing algorithms on R1. The 
standard error is given in parentheses. 

in several variations of our original GA. 

Our other expectation-that the GA would outperform simple hill-climbing on 
these functions-was also proved wrong. Forrest and Mitchell (1993) compared 
the GA's performance on a variation of Rl with three different hill-climbing meth­
ods: steepest ascent hill-climbing (SAHC), next-ascent hill-climbing (NAHC), and a 
zero-temperature Monte Carlo method, which Forrest and Mitchell called ''random 
mutation hill-climbing" (RMHC). In RMHC, a string is chosen at random and its 
fitness is evaluated. The string is then mutated at a randomly chosen single locus, 
and the new fitness is evaluated. If the mutation leads to an equal or higher fitness, 
the new string replaces the old string. This procedure is iterated until the optimum 
has been found or a maximum number of function evaluations has been performed. 

Here we have repeated these experiments for R1. The results (similar to those given 
for R2 in Forrest & Mitchell, 1993) are given in Table 1. We compare the mean 
and median number of function evaluations to find the optimum string rather than 
mean and median absolute run time, because in almost all GA applications (e.g., 
evolving neural-network architectures), the time to perform a function evaluation 
vastly dominates the time required to execute other parts of the algorithm. For this 
reason, we consider all parts of the algorithm excluding the function evaluations to 
take negligible time. 

The results on SAHC and NAHC were as expected-while the GA found the opti­
mum on RI in an average of 61,334 function evaluations, neither SAHC nor NAHC 
ever found the optimum within the maximum of 256,000 function evaluations. How­
ever, RMH C found the optimum on Rl in an average of 6179 function evaluations­
nearly a factor often faster than the GA. This striking difference on landscapes orig­
inally designed to be "royal roads" for the GA underscores the need for a rigorous 
answer to the question posed earlier: "Under what conditions will a GA outperform 
other search algorithms, such as hill climbing?" 

2 ANALYSIS OF RMHC AND AN IDEALIZED GA 

To begin to answer this question, we analyzed the RMHC algorithm with respect to 
R1 • Suppose the fitness function c,onsists of N adjacent blocks of K Is each (in RI, 
N = 8 and K = 8). What is the expected time (number of function evaluations) 
E(K, N) to find the optimum string of allIs? We can first ask a simpler question: 
what is the expected time E(K, 1) to find a single block of K Is? A Markov-chain 
analysis (not given here) yields E(K, 1) slightly larger than 2K , converging slowly 
to 2K from above as K -+ 00 (Richard Palmer, personal communication). For 
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example, for K = 8, E(K, 1) = 301.2. 

Now suppose we want RMHC to discover a string with N blocks of K Is. The 
time to discover a first block of K Is is E(K, 1), but, once it has been found, the 
time to discover a second block is longer, since many of the function evaluations are 
"wasted" on testing mutations inside the first block. The proportion of non-wasted 
mutations is (K N - K) / K N; this is the proportion of mutations that occur in the 
KN - K positions outside the first block. The expected time E(K, 2) to find a 
second block is E(K, 1) + E(K, l)[KN/(KN - K)]. Similarly, the total expected 
time is: 

E(K,N) = 
N N 

E(K, 1) + E(K, 1) N _ 1 + ... + E(K, 1) N _ (N _ 1) 

[ 1 1 1] E(K,l)N 1 + "2 + 3 + ... + N . (1) 

(The actual value may be a bit larger, since E(K,l) is the expected time to the first 
block, whereas E(K, N) depends on the worst time for the N blocks.) Expression 
(1) is approximately E(K, l)N(logN + r), where r is Euler's constant. For K = 
8, N = 8, the value of expression (1) is 6549. When we ran RMHC on the Rl 
function 200 times, the average number of function evaluations to the optimum was 
6179, which agrees reasonably well with the expected value. 

Could a GA ever do better than this? There are three reasons why we might expect 
a GA to perform well on Rl. First, at least theoretically the GA is fast because 
of implicit parallelism (Holland, 1975/1992): each string in the population is an 
instance of many different schemas, and if the population is large enough and is 
initially chosen at random, a large number of different schemas-many more than 
the number of strings in the population-are being sampled in parallel. This should 
result in a quick search for short, low-order schemas that confer high fitness. Second, 
fitness-proportionate reproduction under the GA should conserve instances of such 
schemas. Third, a high crossover rate should quickly combine instances oflow-order 
schemas on different strings to create instances of longer schemas that confer even 
higher fitness. Our previous experiments (Forrest & Mitchell, 1993) showed that 
the simple GA departed from this "in principle" behavior. One major impediment 
was hitchhiking, which limited implicit parallelism by fixing certain schema regions 
sub optimally. But if the GA worked exactly as described above, how quickly could 
it find the optimal string of Rl? 

To answer this question we consider an "idealized genetic algorithm" (IGA) that 
explicitly has the features described above. The IGA knows ahead of time what the 
desired schemas are, and a "function evaluation" is the determination of whether a 
given string contains one or more of them. In the IGA, at each time step a single 
string is chosen at random, with uniform probability for each bit. The string is 
"evaluated" by determining whether it is an instance of one or more of the desired 
schemas. The first time such a string is found, it is sequestered. At each subsequent 
discovery of an instance of one or more not-yet-discovered schemas the new string 
is instantaneously crossed over with the sequestered string so that the sequestered 
string contains all the desired schemas that have been discovered so far. 

This procedure is unusable in practice, since it requires knowing a priori which 
schemas are relevant, whereas in general an algorithm such as the GA or RMHC 
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directly measures the fitness of a string, and does not know ahead of time which 
schemas contribute to high fitness. However, the idea behind the GA is to do 
implicitly what the IGA is able to do explicitly. This idea will be elaborated below. 

Suppose again that our desired schemas consist of N blocks of K 1s each. What is 
the expected time (number of function evaluations) until the saved string contains 
all the desired schemas? Solutions have been suggested by G. Huber (personal com­
munication), and A. Shevoroskin (personal communication), and a detailed solution 
is given in (Holland, 1993). The main idea is to note that the probability of finding 
a single desired block 8 on a random string is p = 1/2K, and the probability of 
finding s by time t is 1 - (1 - p)t. Then the probability PN(t) that all N blocks 
have been found by time tis: 

PN(t) = (1 - (1 - p)t)N, 

and the probability PN(t) that all N blocks are found at exactly time tis: 

PN(t) = [1- (1- p)t]N - [1- (1- p)t-l]N. 

The expected time is then 
00 

EN = 2:t ([1- (1- p)t]N - [1- (1- p)t-l]N). 
1 

This sum can be expanded and simplified, and with some work, along with the 
approximation (1-p)n ~ 1-np for small p, we obtain the following approximation: 

N 1 
EN ~ (lip) I:; ~ 2K(logN + 1)· 

n=l 

The major point is that the IGA gives an expected time that is on the order of 
2K log N, where RMHC gives an expected time that is on the order of 2K N log N, 
a factor of N slower. This kind of analysis can help us predict how and when the 
G A will outperform hill climbing. 

What makes the IGA faster than RMHC? A primary reason is that the IGA per­
fectly implements implicit parallelism: each new string is completely independent 
of the previous one, so new samples are given independently to each schema region. 
In contrast, RMHC moves in the space of strings by single-bit mutations from an 
original string, so each new sample has all but one of the same bits as the previ­
ous sample. Thus each new string gives a new sample to only one schema region. 
The IGA spends more time than RMHC constructing new samples, but since we 
are counting only function evaluations, we ignore the construction time. The IGA 
"cheats" on each function evaluation, since it knows exactly the desired schemas, 
but in this way it gives a lower bound on the number of function evaluations that 
the GA will need on this problem. 

Independent sampling allows for a speed-up in the IGA in two ways: it allows for 
the possibility of more than one desirable schema appearing simultaneously on a 
given sample, and it also means that there are no wasted samples as there are 
in RMHC. Although the comparison we have made is with RMHC, the IGA will 
also be significantly faster on Rl (and similar landscapes) than any hill-climbing 
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Levell: 81 82 83 8, 85 8S 81 8a 89 810 811 812 813 8H 815 81S 

Level 2: (81 82) (83 8,) (85 8S) (81 8a) (89 810) (811 812) (813 81') (815 81S) 

Level 3: (81 82 83 8,) (85 8S 81 8a) (89 810 811 812) (813 8H 815 81S) 

Level 4: (81 82 83 8, 85 8S 81 8a) (89 810 811 812 813 8H 815 81S) 

Figure 2: Royal Road Function R4. 

method that works by mutating single bits (or a small number of bits) to obtain 
new samples. 

The hitchhiking effects described earlier also result in a loss of independent samples 
for the real GA. The goal is to have the real GA, as much as possible, approximate 
the IGA. Of course, the IGA works because it explicitly knows what the desired 
schemas are; the real GA does not have this information and can only estimate 
what the desired schemas are by an implicit sampling procedure. But it is possible 
for the real GA to approximate a number of the features of the IGA. Independent 
samples: The population size has to be large enough, the selection process has to 
be slow enough, and the mutation rate has to be sufficient to make sure that no 
single locus is fixed at a single value in every (or even a large majority) of strings in 
the population. Sequestering desired schemas: Selection has to be strong enough to 
preserve desired schemas that have been discovered, but it also has to be slow enough 
(or, equivalently, the relative fitness of the non-overlapping desirable schemas has 
to be small enough) to prevent significant hitchhiking on some highly fit schemas, 
which can crowd out desired schemas in other parts of the string. Instantaneous 
crossover: The crossover rate has to be such that the time for a crossover to occur 
that combines two desired schemas is small with respect to the discovery time for 
the desired schemas. Speed-up over RMHC: The string length (a function of N) has 
to be large enough to make the N speed-up factor significant. 

These mechanisms are not all mutually compatible (e.g., high mutation works 
against sequestering schemas), and thus must be carefully balanced against one 
another. A discussion of how such a balance might be achieved is given in Holland 
(1993). 

3 RESULTS OF EXPERIMENTS 

As a first step in exploring these balances, we designed R3, a variant of our previous 
function R2 (Forrest & Mitchell, 1993), based on some of the features described 
above. In R3 the desired schemas are 81-88 (shown in Fig. 1) and combinations 
of them, just as in R2. However, in R3 the lowest-level order-8 schemas are each 
separated by "introns" (bit positions that do not contribute to fitness-see Forrest 
& Mitchell, 1993; Levenick, 1991) of length 24. 

In R3, a string that is not an instance of any desired schema receives fitness 1.0. 
Every time a new level is reached-i.e., a string is found that is an instance of one 
or more schemas at that level-a small increment u is added to the fitness. Thus 
strings at level 1 (that are instances of at least one level-l schema) have fitness 
1 + u, strings at level 2 have fitness 1 + 2u, etc. For our experiments we set u = 0.2. 
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Table 2: R4: Mean function evaluations (over 37 runs) to attain each level for 
the GA and for RMHC. In the GA runs, the number of function evaluations is 
sampled every 500 evaluations, so each value is actually an upper bound for an 
interval of length 500. The standard errors are in parentheses. The percentage of 
runs which reached each level is shown next to the heading "% runs." Only runs 
which successfully reached a given level were included in the function evaluation 
calculations for that level. 

The purpose of the introns was to help maintain independent samples in each schema 
position by preventing linkage between schema positions. The independence of 
samples was also helped by using a larger population (2000) and the much slower 
selection scheme given by the function. In preliminary experiments on R3 (not 
shown) hitchhiking in the GA was reduced significantly, and the population was 
able to maintain instances of all the lowest-level schemas throughout each run. 

Next, we studied R4 (illustrated in Figure 2). R4 is identical to R3, except that it 
does not have introns. Further, R4 is defined over 128-bit strings, thus doubling the 
size of the problem. In preliminary runs on R4, we used a population size of 500, 
a mutation rate of 0.005 (mutation always flips a bit), and multipoint crossover, 
where the number of crossover points for each pair of parents was selected from a 
Poisson distribution with mean 2.816. 

Table 2 gives the mean number of evaluations to reach levels 1, 2, and 3 (neither 
algorithm reached level 4 within the maximum of 106 function evaluations). As 
can be seen, the time to reach level one is comparable for the two algorithms, but 
the GA is much faster at reaching levels 2 and 3. Further, the GA discovers level 
3 approximately twice as often as RMHC. As was said above, it is necessary to 
balance the maintenance of independent samples with the sequestering of desired 
schemas. These preliminary results suggest that R4 does a better job of maintaining 
this balance than the earlier Royal Road functions. Working out these balances in 
greater detail is a topic of future work. 

4 CONCLUSION 

We have presented analyses of two algorithms, RMHC and the IGA, and have used 
the analyses to identify some general principles of when and how a genetic algorithm 
will outperform hill climbing. We then presented some preliminary experimental 
results comparing the GA and RMHC on a modified Royal Road landscape. These 
analyses and results are a further step in achieving our original goals-to design the 
simplest class of fitness landscapes that will distinguish the GA from other search 
methods, and to characterize rigorously the general features of a fitness landscape 
that make it suitable for a GA. 
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Our modified Royal Road landscape R4, like Rl, is not meant to be a realistic 
example of a problem to which one might apply a GA. Rather, it is meant to be 
an idealized problem in which certain features most relevant to GAs are explicit, 
so that the GA's performance can be studied in detail. Our claim is that in order 
to understand how the GA works in general and where it will be most useful, we 
must first understand how it works and where it will be most useful on simple yet 
carefully designed landscapes such as these. The work reported here is a further 
step in this direction. 
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