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We have developed visual preprocessing algorithms for extracting 
phonologically relevant features from the grayscale video image of 
a speaker, to provide speaker-independent inputs for an automat­
ic lipreading ("speechreading") system. Visual features such as 
mouth open/closed, tongue visible/not-visible, teeth visible/not­
visible, and several shape descriptors of the mouth and its motion 
are all rapidly computable in a manner quite insensitive to lighting 
conditions. We formed a hybrid speechreading system consisting 
of two time delay neural networks (video and acoustic) and inte­
grated their responses by means of independent opinion pooling 
- the Bayesian optimal method given conditional independence, 
which seems to hold for our data. This hybrid system had an er­
ror rate 25% lower than that of the acoustic subsystem alone on a 
five-utterance speaker-independent task, indicating that video can 
be used to improve speech recognition. 
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1 INTRODUCTION 

Automated speech recognition is notoriously hard, and thus any predictive source 
of information and constraints that could be incorporated into a computer speech 
recognition system would be desirable. Humans, especially the hearing impaired, 
can utilize visual information - "speech reading" - for improved accuracy (Dodd 
& Campbell, 1987, Sanders & Goodrich, 1971). Speech reading can provide direct 
information about segments, phonemes, rate, speaker gender and identity, and sub­
tle information for segmenting speech from background noise or multiple speakers 
(De Filippo & Sims, 1988, Green & Miller, 1985). 

Fundamental support for the use of visual information comes from the complemen­
tary nature of the visual and acoustic speech signals. Utterances that are difficult to 
distinguish acoustically are the easiest to distinguish. visually, and vice versa. Thus, 
for example /mi/ H /ni/ are highly confusable acoustically but are easily distin­
guished based on the visual information of lip closure. Conversely, /bi/ H /pi/ are 
highly confusable visually ("visemes"), but are easily distinguished acoustically by 
the voice-onset time (the delay between the burst sound and the onset of vocal fold 
vibration). Thus automatic lipreading promises to help acoustic speech recognition 
systems for those utterances where they need it most; visual information cannot 
contribute much information to those utterances that are already well recognized 
acoustically. 

1.1 PREVIOUS SYSTEMS 

The system described below differs from recent speech reading systems. Whereas 
Yuhas et al. (1989) recognized static images and acoustic spectra for vowel recogni­
tion, ours recognizes dynamic consonant-vowel (CV) utterances. Whereas Petajan, 
Bischoff & Bodoff (1988) used thresholded pixel based representations of speakers, 
our system uses more sophisticated visual preprocessing to obtain phonologically 
relevant features. Whereas Pentland and Mase (1989) used optical flow methods 
for estimating the motion of four lip regions (and used no acoustic subsystem), we 
obtain several other features from intensity profiles. Whereas Bregler et al. (1993) 
used direct pixel images, our recognition engine used a far more compressed visual 
representation; our method of integration, too, was based on statistical properties 
of our data. We build upon the basic recognizer architecture of Stork, Wolff and 
Levine (1992), but extend it to grayscale video input. 

2 VISUAL PREPROCESSING 

The sheer quantity of image data presents a hurdle to utilizing video information for 
speech recognition. Our approach to video preprocessing makes use of several simple 
computations to reduce the large amount of data to a manageable set of low-level 
image statistics describing the region of interest around the mouth. These statistics 
capture such features as the positions of the upper and lower lip, the mouth shape, 
and their time derivatives. The rest of this section describes the computation of 
these features. 

Grayscale video images are captured at 30 frames/second with a standard NTSC 
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pixel posiCion pixel position 

Figure 1: (Left) The central bands of the automatically determined ROI from two frames 
of the video sequence of the utterance /ba/ and their associated luminance profiles along 
the central marked line. Notice that the lowest valley in this profile changes drastically 
in intensity as the mouth changes from closed to open. In addition, the linear separation 
between the peaks adjacent to the lowest valley also increases as the mouth opens. These 
features are identified on the ROI from a single frame (right). The position, intensity, and 
temporal variation of these features provide input to our recognizer. 

camera, and subsampled to give 150 x 150 pixel image sequence. A 64 x 64 pixel 
region of interest (ROI) is detected and tracked by means of the following operations 
on the full video images: 

• Convolve with 3 x 3 pixel low-pass filter 
• Convolve with 3 x 3 pixel edge detector 
• Convolve with 3 x 3 pixel low-pass filter 
• Threshold at (Imax - I min)/2 
• Triangulate eyes with mouth 

(to remove spatial noise) 
(to detect edges) 
(to smooth edges) 
(to isolate eyes and mouth) 
(to obtain ROI) 

We also use temporal coherence in frame-to-frame correlations to reduce the effects 
of noise in the profile or missing data (such as "closed" eyes). Within the ROI the 
phonological features are found by the following steps (see Figure 1): 

• Convolve with 16 x 16 pixel low-pass filter 
• Extract a vertical intensity profile 
• Extract a horizontal intensity profile 
• Locate and label intensity peaks and valleys 
• Calculate interframe peak motion 

(to remove noise) 
(mouth height) 
(mouth width) 
(candidates for teeth, tongue) 
(speed estimates) 

Video preprocessing tasks, including temporal averaging, are usually complicated 
because they require identifying corresponding pixels across frames. We circumvent 
this pixel correspondence problem by matching labeled features (such as intensity 
extrema - peaks and valleys) on successive frames. 
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2.1 FEATURES 

The seventeen video features which serve as input to our recognizer are: 
• Horizontal separation between the left and right mouth corners 
• Vertical separation between the top and bottom lips 

For each of the three vertically aligned positions: 
• Vertical position: Pv 

• Intensity value: I 
• Change in intensity versus time: !:::.I /!:::.t 

For both of the mouth corner positions: 
• Horizontal position: Ph 
• Intensity value: I 
• Change in intensity versus time: !:::.I /!:::.t 

For each speaker, each feature was scaled have a zero mean and unit standard 
deviation. 

3 DATA COLLECTION AND NETWORK TRAINING 

We trained the modified time delay neural network (Waibel, 1989) shown in Figure 2 
on both the video and acoustic data. (See Stork, Wolff and Levine (1992) for 
a complete description of the architecture.) For the video only (VO) network, the 
input layer consists of 24 samples of each of the 17 features, corresponding to roughly 
0.8 seconds. Each (sigmoidal) hidden unit received signals from a receptive field of 
17 features for five consecutive frames. Each of the different hidden units (there 
were 3 for the results reported below) is replicated to cover the entire input space 
with overlapping receptive fields. The next layer consisted of 5 rows of x-units (one 
row for each possible utterance), with exponential transfer functions. They received 
inputs from the hidden units for 11 consecutive frames, thus they indirectly received 
input from a total of 18 input frames corresponding to roughly 0.6 seconds. The 
activities of the x-units encode the likelihood that a given letter occurs in that 
interval. The final layer consists of five p-units (probability units), which encode 
the relative probabilities of the presence of each of the possible utterances across 
the entire input window. Each p-unit sums the entire row of corresponding x-units, 
normalized by the sum over all x-units. (Note that "weights" from the x-units to 
the p-units are fixed.) 

The acoustic only (AO) network shared the same architecture, except that the input 
consisted of 100 frames (1 second) of 14 mel scale coefficients each, and the x-units 
received fan in from 25 consecutive hidden units. 

In the TDNN architecture, weights are shared, i.e., the pattern of input-to-hidden 
weights is forced to be the same at each interval. Thus the total number of inde­
pendent weights in this VO network is 428, and 593 for the AO network. 

These networks were trained using Backpropagation to minimize the Kullback­
Leibler distance (cross-entropy) between the targets and outputs, 

t· 
E = D(t II p) = Ltdn(--.!..). (1) 

. Pi 
l 

Here the target probability is 1 for the target category, and 0 for all other categories. 
In this case Equation 1 simplifies to E = -In(pc) where c is the correct category. 
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Figure 2: Modified time delay neural network architecture (left) and unit activities 
for a particular pattern (right). The output probabilities are calculated by inte­
grating over the entire input window and normalizing across categories. Note the 
temporal segmentation which naturally occurs in the layer of X-units. 

3.1 SENSORY INTEGRATION 

Given the output probability distributions of the two networks, we combine them 
assuming conditional independence and using Bayes rule to obtain: 

(2) 

That is, the joint probability of the utterance belonging to category Ci is just the 
normalized product of the outputs for category Ci of each network. 

This "independent opinion pooling" (Berger, 1985) offers several ad vantages over 
other methods for combining the modalities. First, it is optimal if the two signals 
really are conditionally independent, which appears to be the case for our data. 
(Proving that two signals are not conditionally independent is difficult.) Moreover, 
Massaro and Cohen (1983) have shown that human recognition performance is 
consistent with the independence assumption. A second advantage is simplicity. 
The combination adds no extra parameters beyond those used to model each signal, 
thus generalization performance should be good. Furthermore, the independent 
recognizers can be developed and trained separately, the only requirement is that 
they both output probability estimations. 

A third advantage is that this system automatically compensates for noise and 
assigns more importance to the network which is most sure of its classification. For 
example, if the video data were very noisy (or missing), the video network would 
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la -::J 
.e- fa 
::J 

o da 

ba 

judge all utterances equally likely. In this case the video contribution would cancel 
out, and the final output probabilities would be determined solely by the audio 
network. Bregler et al. (1993) attempt to compensate for the variance between 
channels by using the entropy of the output of the individual networks as a weighting 
on their contribution to the final outputs. Their ad hoc method suffers several 
drawbacks. For example, it does not distinguish the case where a one category is 
highly likely and the rest equiprobable, from the case where several categories are 
moderately likely. 

A final advantage of Eq. 2 is that it does not require synchrony of the acoustic and 
visual features. The registration between the two signals could be off substantially 
(as long as the same utterance is present in the input to both networks). On the 
contrary, methods which attempt to detect cross-modal features would be very 
sensitive to the relative timing of the two signals. 

4 RESULTS 

Video Test 

o 0 o 0 0 
o 0 0 0 0 

o 00 0 0 

0000 0 

0 0 0 0 0 

ba da fa la ma 

Input 
54% correct 

Audio Test 

maooooO 

o :OQ~ _ la 
::J 

.e- fa ::J o 
da 00 0 0 0 

baOO ooQ 

ba da fa la ma 

Input 
64% correct 

-::J 
Q. -::J o 

AV Test 

maooooO 

:: 0 :c9~ 
da 00 0 0 0 

baOo 0 0 

ba da fa la ma 

Input 
72% correct 

Figure 3: Confusion matrices for the video only (VO), acoustic only (AO), and the AV 
networks. Each vertical column is labeled by the spoken CV pair presented as input; each 
horizontal row represents the output by the network. The radius of each disk in the array 
is proportional to the output probability given an input letter. The recognition accuracy 
(measured as a percentage of novel test patterns properly classified by maximum network 
output) is shown. 

The video and audio networks were trained separately on several different con­
sonants in the same vowel context (/ba/, Ida/, Ifa/, Ila/, Ima/) recorded from 
several different speakers. (For the results reported below, there were 10 speakers, 
repeating each of 5 CV pairs 5 times. Four of these were used for training, and one 
for testing generalization.) 

For the video only networks, the correct classification (using the Max decision rule) 
on unseen data is typically 40-60%. As expected, the audio networks perform better 
with classification rates in the 50-70% range on these small sets of similar utterances. 
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Figure 3 shows the confusion matrices for the network outputs. We see that for the 
video only network the confusion matrix is fairly diagonal, indicating generally good 
performance. However the video network does tend to confuse utterances such as 
/ba/ H /maj. The audio network generally makes fewer errors, but confuses other 
utterances, such as /ba/ H / da/. 
The performance for the combined outputs (the AV network) is much better than 
either of the individual networks, achieving classification rates above 70%. (In 
previous work with only 4 speakers, classifications rates of up to 95% have been 
achieved.) We also see a strongly diagonal confusion matrix for the AV network, 
indicating that complementary nature of the the confusions made by the individual 
networks. 

5 RELATIONSHIP TO HUMAN PERCEPTION 

Visual 
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Figure 4: Confusion matrices from human recognition performance for video only, 
acoustic only, and combined speech for CV pairs (Massaro et aI., 1993). 

Interestingly, our results are qualitatively similar to findings in human perception. 
Massaro et aI. (1993) presented Visual only, Acoustic only, and combined speech to 
subjects and collected response probabilities. As can be seen in the confusion ma­
trices of Figure 4, subjects are not so bad at lipreading. The Visual only confusion 
matrix shows a strong diagonal component, though confusions such as /ma/ H /ba/ 
are common. Performance on acoustic speech is better, of course, but there are still 
confusions such as /ba/ H / daj. Combined speech yields even better recognition 
performance, eliminating most confusions. In fact, Massaro et aI. found that the 
response probabilities of combined speech are accurately predicted by the product 
of the two single mode response probabilities. Massaro uses this and other evidence 
to argue quite convincingly that humans treat acoustic and visual speech channels 
independently, combining them only at a rather late stage of processing. 
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6 CONCLUSIONS AND FUTURE WORK 

The video pre-processing presented here represents a first pass at reducing the 
amount of visual data to a manageable level in order to enable on-line process­
ing. Our results indicate that even these straightforward, computationally tractable 
methods can significantly enhance speech recognition. Future efforts will concen­
trate on refining the pre-processing to capture more information, such as rounding 
and f-tuck, and testing the efficacy of our recognition system on larger datasets. The 
complementary nature of the acoustic and visual signals lead us to believe that a 
further refined speech reading system will significantly improve the state-of-the-art 
acoustic recognizers, especially in noisy environments. 
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