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Abstract 

The satisfiability of random CNF formulae with precisely k vari­
ables per clause ("k-SAT") is a popular testbed for the performance 
of search algorithms. Formulae have M clauses from N variables, 
randomly negated, keeping the ratio a = M / N fixed . For k = 2, 
this model has been proven to have a sharp threshold at a = 1 
between formulae which are almost aways satisfiable and formulae 
which are almost never satisfiable as N --jo 00 . Computer experi­
ments for k = 2, 3, 4, 5 and 6, (carried out in collaboration with 
B. Selman of ATT Bell Labs). show similar threshold behavior for 
each value of k. Finite-size scaling, a theory of the critical point 
phenomena used in statistical physics, is shown to characterize the 
size dependence near the threshold. Annealed and replica-based 
mean field theories give a good account of the results . 

"Permanent address: IBM TJ Watson Research Center, Yorktown Heights, NY 10598 
USA. (kirk@watson.ibm.com) Portions of this work were done while visiting the Salk 
Institute, with support from the McDonnell-Pew Foundation. 
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1 Large-scale computation without a length scale 

It is increasingly possible to model the natural world on a computer. Condensed 
matter physics has strategies to manage the complexities of such calculations, usu­
ally depending on a characteristic length. For example, molecules or atoms with 
finite ranged interactions can be broken down into weakly interacting smaller parts. 
We may also use symmetry to identify natural modes of the system as a whole. 
Even in the most difficult case, continuous phase transitions correlated over a wide 
range of scales, the renormalization group provides a way of collapsing the problem 
down to its "relevant" parts by providing a generator of behavior on all scales in 
terms of the critical point itself. 

But length scales are not much help in organizing another sort of large calculation. 
Examples include large rule-based "expert systems" that model the particulars of 
complex industrial processes. Digital Equipment, for example, has used a network 
of three or more expert systems (originally called "R1/XCON") to check computer 
orders for completeness and internal consistency, to schedule production and ship­
ping, and to aid a salesman to anticipate customers' needs. This very detailed set 
of tasks in 1979 required 2 programmers and 250 rules to deal with 100 parts. In 
the ten years described by Barker (1989), it grew 100X, employing 60 programmers 
and nearly 20,000 rules to deal with 30,000 part numbers. 100X in ten years is only 
moderate growth, and it would be valuable to understand how technical, social, and 
business factors have constrained it. 

Many important commercial and scientific problems without length scales are ready 
for attack by computer modelling or automatic classification, and lie within a few 
decades of XCON's size. Retail industries routinely track 105 - 106 distinct items 
kept in stock. Banks, credit card companies, and specialized information providers 
are building models of what 108 Americans have bought and might want to buy 
next. In biology, human metabolism is currently described in terms of > 1000 
substances coupled through> 10,000 reactions, and the data is doubling yearly. 
Similarly, amino acid sequences are known for> 60,000 proteins. 

A deeper understanding of the computational cost of these problems of order 106±2 

is needed to see which are practical and how they can be simplified. We study 
an idealization of XC ON-style resolution search, and find obvious collective effects 
which may be at the heart of its computational complexity. 

2 Threshold Phenomena and Random k-SAT 

Properties of randomly generated combinatorial structures often exhibit sharp 
threshold phenomena analogous to the phase transitions studied in condensed mat­
ter physics. Recently, thresholds have been observed in randomly generated Boolean 
formulae. Mitchell et al. (1992) consider the k-satisfiability problem (k-SAT). An 
instance of k-SAT is a Boolean formula in conjunctive normal form (CNF), i.e., 
a conjunction (logical AND) of disjunctions or clauses (logical ORs), where each 
disjunction contains exactly k literals. A literal is a Boolean variable or, with equal 
probability, its negation. The task is to determine whether there is an assignment 
to the variables such that all clauses evaluate to true. Here, we will use N to denote 
the number of variables and M for the number of clauses in a formula. 
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For randomly generated 2-SAT instances, it has been shown analytically that for 
large N, when the ratio a: = M / N is less than 1 the instances are almost all 
satisfiable, whereas for ratios larger than 1, almost all instances are unsatisfiable 
(Chvatal and Reed 1992; Goerdt 1992). For k ~ 3, a rigorous analysis has proven 
to be elusive. Experimental evidence, however , strongly suggests a threshold with 
a: ~ 4.3 for 3SAT (Mitchell et al. 1992; Crawford and Auton 1993; Larrabee 1993). 

One of the main reasons for studying randomly generated 3CNF formulae is for their 
use in the empirical evaluation of combinatorial search algorithms. 3CNF formulae 
are good candidates for the evaluation of such algorithms because determining their 
satisfiability is an NP-complete problem. This also holds for larger values of k. For 
k = 1 or 2, the satisfiability problem can be solved efficiently (Aspvall et al. 1979) . 
Despite the worst-case complexity, simple heuristic methods can usually determine 
the satisfiability of random formulae. However, computationally challenging test 
instances are found by generating formulae at or near the threshold (Mitchell et al. 
1992). Cheeseman (1991) has made a similar observation of increased computational 
cost for heuristic search at a boundary between two distinct phases or behaviors of 
a combinatorial model. 

We will provide a precise characterization of the N -dependence of the threshold 
phenomena for k-SAT with k ranging from 2 to 6. We will employ finite size scaling, 
a method from statistical physics in which direct observation of the width of the 
threshold , or "critical region" of a transition is used to characterize the "universal" 
behavior of quantities across the entire critical region, extending the analysis to 
combinatorial problems in which N characterizes the size of the model observed. 
For discussion of the applicability of finite-size scaling to systems without a metric, 
see Kirkpatrick and Selman (1993). 
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3 Experimental data 

We have generated extensive data on the satisfiability of randomly generated k­
CNF formulae with k ranging from 2 to 6. Fig. 1 shows the fraction of random 
k-SAT formulae that is unsatisfiable as a function of the ratio, a. For example, 
the left-most curve in Fig. 1 shows the fraction of formulae that is unsatisfiable for 
random 2CNF formulae with 50 variables over a range of values of a. 

Each data point was generated using 10000 randomly generated formulae, giving 
1 % accuracy. We used a highly optimized implementation of the Davis-Putnam 
procedure (Crawford and Auton 1993). The procedure works best on formulae with 
smaller k . Data was obtained for k = 2 on samples with N ~ 500, for k = 3 with 
N ~ 100, and for k = 5 with N ~ 40, all at comparable computing cost. 

Fig. 1 (for N ranging from 10 to 50) shows a threshold for each value of k. Except 
for the case k = 2, the curves cross at a single point and sharpen up with increasing 
N. For k = 2, the intersections between the curves for the largest values of N seem 
to be converging to a single point as well, although the curves for smaller N deviate. 
The point where 50% of the formulae are unsatisfiable is thought to be where the 
computationally hardest problems are found (Mitchell et al. 1992; Cheeseman et al. 
1991). The 50% point lies consistently to the right of the scale-invariant point (the 
point where the curves cross each other), and shifts with N. 

There is a simple explanation for the rapid shift of the thresholds to the right 
with increasing k . The probability that a given clause is satisfied by a random 
input configuration is (2k - 1)/2k = (1 - 2- k) _ 'k. If we treat the clauses as 
independent, the probability that all clauses are satisfied is ,~ = ,kN . We define 
the entropy, 5, per in~ut as l/N times the log2 of the expected number of satisfying 
configurations,2N 'k . 5 = 1 + alog2(,k) = 1- a/aann, and the vanishing of the 
entropy gives an estimate of the threshold, identical to the upper bound derived 
by several workers (see Franco (1983) and citations in Chvatal (1992)): aann = 
-(log2(1 - 2-k))-1 ~ (ln2)2k. This is called an annealed estimate for C¥c, because 
it ignores the interactions between clauses, just as annealed theories of materials 
(see Mezard 1986) average over many details of the disorder. We have marked aann 
with an arrow for each k in the figures, and tabulate it in Table 1. 

4 Results of Finite-Size Scaling Analysis 

From Fig . 1, it is clear that the threshold "sharpens up" for larger values of N. 
Both the threshold shift and the increasing slope in the curves of Fig. 1 can be 
accounted for by finite size scaling. (See Stauffer and Aharony (1992) or Kirkpatrick 
and Swendsen (1985).) We plot the fraction of samples unsatisfied against the 
dimensionless rescaled variable, 

y = Nl/V(a - c¥c)/ac . 

Values for a c and 1I must be derived from the experimental data. First a c is 
determined as the crossing point of the curves for large N in Fig. 1. Then 1I is 
determined to make the slopes match up through the critical region. In Fig. 2 (for 
k = 3) we find that these two parameters capture both the threshold shift and the 
steepening of the curves, using a c = 4.17 and 1I = 1.5. We see that F, the fraction 
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Fig. 2: Rescaled 3-SAT data using a c = 4.17, lJ = 1.5. 
Fig. 3: Rescaled data for 2-, 3-, 4-, 5-, and 6-SAT approach annealed limit. 

of unsatisfiable formulae, is given by F(N, a) = I(y) , where the invariant function, 
I, is that graphed in Fig. 2. 

A description of the 50% threshold shift follows immediately. If we define y' by 
I(y') = 0.5, then a50 = a c(1 + y' N- 1/ V ) . From Fig. 2 we find that a50 ~ 4.17 + 
3.1N- 2/ 3 . Crawford and Auton (1993) fit their data on the 50% point as a function 
of N by arbitrarily assuming that the leading correction will be O(I/N) . They 
obtain a50 = 4.24 + 6/ N. However, the two expressions differ by only a few percent 
as N ranges from 10 to 00. 

We also obtained good results in rescaling the data for the other values of k. In 
Table 1 we give the critical parameters obtained from this analysis. The error 
bars are subjective, and show the range of each parameter over which the best 
fits were obtained. Note that v appears to be tending to 1, and aann becomes 
an increasingly good approximation to a c as k increases. The success of finite-size 
scaling with different powers, v, is strong evidence for criticality, i.e., diverging 
correlations, even in the absence of any length . 

Finally, we found that all the crossovers were similar in shape. In fact, combining 
the various rescaled curves in figure 3 shows that the curves for k ~ 3 all coincide 
in the vicinity of the 50% point, and tend to a limiting form, which can be obtained 
by extending the annealed arguments of the previous section. If we define 

then the probability that a formula remains unsatisfied for all 2N configurations is 

The curve for k = 2 is similar in form, but shifted to the right from the other ones. 



444 Kirkpatrick, Gyorgyi, Tishby, and Troyansky 

k O'ann 0'2 O'c 0" V 

2 2.41 1.38 1.0 2.25 2.6±.2 
3 5.19 4.25 4.17±.03 0.74 1.5±.1 
4 10.74 9.58 9.75±.05 0.67 1.25±.05 
5 21.83 20.6 20.9±.1 0.71 1.1±.O5 
6 44.01 42.8 43.2±.2 0.69 1.05±.05 

Table 1: Critical parameters for random k-SAT. 

5 Outline of Statistical Mechanics Analysis 

Space permits only a sketch of our analysis of this model. Since the N inputs are 
binary, we may represent them as a vector, X, of Ising spins: 

X={xi=±l} i=l, ... N. 

Each random formula, F, can be written as a sum of its M clauses, Cj, 

M 

F = LCj, 
j=1 

where 
k 

Cj = II (1 - Jj 1X)/2. 
1=1 

where the vector, Jj,l, has only one non-zero element, ±1, at the input which 
it selects. F evaluates to the number of clauses left unsatisfied by a particular 
configuration. It is natural to take the value of F to be the energy. The partition 
function, 

z = tr{x.}e.6.r = tr{x.} II e.6Cj , 

j 

where f3 is the inverse of a fictitious temperature, factors into contributions from 
each clause. The "annealed" approximation mentioned above consists simply of 
taking the trace over each subproduct individually, neglecting their interactions. In 
this construction, we expect both energy and entropy, S, to be extensive quantities, 
that is, proportional to N. Fig. 4 shows that this is indeed the case for S( a). The 
lines in Fig. 4 are the annealed predictions S( a, k) = 1 - 0'/ aann. Expressions for 
the energy can also be obtained from the annealed theory, and used to compare 
the specific heat observed in numerical experiments with the simple limit in which 
the clauses do not interact. This gives evidence supporting the identification of 
the unsatisfied phase as a spin glass. Finally, a plausible phase diagram for the 
spin glass-like "unsatisfied" phase is obtained by solving for S(T) = 0 at finite 
temperatures. 

To perform the averaging over the random clauses correctly requires introducing 
replicas (see Mezard 1986), which are identical copies of the random formula, and 
defining q, the overlap between the expectation values of the spins in any two 
replicas, as the new order parameter. The results appear to be capable of accounting 
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for the difference between experiment and the annealed predictions at finite k. For 
example, an uncontrolled approximation in which we consider just two replicas 
gives the values of a2 in Table 1, and accounts rather closely for the average overlap 
found experimentally between pairs of lowest energy states, as shown in Fig. 5. The 
2-replica theory gives q as the solution of 

a(k, q) = 2k(1 + q)k-l(4k - 2k+l + (1 - ql)/ln«l + q)(l - q)) 

for q as a function of a. This gives the lines in Fig 5. We defined a2 (in Table 1) 
as the point of inflection, or the maximum in the slope of q(a). 
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6 Conclusions 

We have shown how finite size scaling methods from statistical physics can be used 
to model the threshold in randomly generated k-SAT problems. Given the good fit 
of our scaling analysis, we conjecture that this method can also give useful models 
of phase transitions in other combinatorial problems with a control parameter. 

Several authors have attempted to relate NP-hardness or NP-completeness to the 
characteristics of phase transitions in models of disordered systems. Fu and Ander­
son (see Fu 1989) have proposed spin glasses (magnets with 2-spin interactions of 
random sign) as having inherent exponential complexity. Huberman and colleagues 
(see Clearwater 1991) were first to focus on the diverging correlation length seen 
at continuous phase transitions as the root of computational complexity. In fact, 
both effects can play important roles, but are not sufficient and may not even be 
necessary. 

There are NP-complete problems (e.g. travelling salesman, or max-clique) which 
lack a phase boundary at which "hard problems" cluster. Percolation thresholds 
are phase transitions, yet the cost of exploring the largest cluster never exceeds 
N steps, Exponential search cost in k-SAT comes from the random signs of the 
inputs, which require that the space be searched repeatedly. Note that a satisfying 
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input configuration in 2-SAT can be determined, or its non-existence proven, in 
polynomial time, because it can be reduced to a percolation problem on a random 
directed graph (Aspvall 1979). The spin glass Hamiltonians studied by Fu and 
Anderson have a form close to our 2-SAT formulae, but the questions studied are 
different. Finding an input configuration which falsifies the minimum number of 
clauses is like finding the ground state in a spin glass phase, and is NP-hard when 
a > a c , even for k = 2. Therefore, if both diverging correlations (diverging in size 
if no lengths are defined) and random sign or "spin-glass" effects are present, we 
expect a local search like Davis-Putnam to be exponentially difficult on average. 
But these characteristics do not imply NP-completeness. 
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