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Abstract 

We propose that the binding and segmentation of visual features 
is mediated by two complementary mechanisms; a low resolu­
tion, spatial-based, resource-free process and a high resolution, 
temporal-based, resource-limited process. In the visual cortex, the 
former depends upon the orderly topographic organization in stri­
ate and extrastriate areas while the latter may be related to ob­
served temporal relationships between neuronal activities . Com­
puter simulations illustrate the role the two mechanisms play in 
figure/ ground discrimination, depth-from-occlusion, and the vivid­
ness of perceptual completion. 

1 COMPLEMENTARY BINDING MECHANISMS 

The "binding problem" is a classic problem in computational neuroscience which 
considers how neuronal activities are grouped to create mental representations. For 
the case of visual processing, the binding of neuronal activities requires a mecha­
nism for selectively grouping fragmented visual features in order to construct the 
coherent representations (i.e. objects) which we perceive. In this paper we argue for 
the existence of two complementary mechanisms for neural binding, and we show 
how such mechanisms may operate in the constructiO:l of intermediate-level visual 
representations. 
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Ordered cortical topography has been found in both striate and extrastriate areas 
and is believed to be a fundamental organizational principle of visual cortex. One 
functional role for this topographic mapping may be to facilitate a spatial-based 
binding system. For example, active neurons or neural populations within a cor­
tical area could be grouped together based on topographic proximity while those 
in different areas could be grouped if they lie in rough topographic register. An 
advantage of this scheme is that it can be carried out in parallel across the visual 
field. However, a spatial-based mechanism will tend to bind overlapping or occluded 
objects which should otherwise be segmented. An alternative binding mechanism 
is therefore necessary for binding and segmenting overlapping objects and surfaces. 

Temporal binding is a second type of neural binding. Temporal binding differs 
from spatial binding in two essential ways; 1) it operates at high spatial resolutions 
and 2) it binds and segments in the temporal domain, allowing for the coexistence 
of multiple objects in the same topographic region. Others have proposed that 
temporal events, such as phase-locked firing or I oscillations may play a role in 
neural binding (von der Malsburg, 1981; Gray and Singer, 1989, Crick and Koch, 
1990). For purposes of this discussion, we do not consider the specific nature of the 
temporal events underlying neural binding, only that the binding itself is temporally 
dependent. The disadvantage of operating in the temporal domain is that the 
biophysical properties of cortical neurons (e.g. membrane time constants) forces 
this processing to be resource-limited-only a small number of objects or surfaces 
can be bound and segmented simultaneously. 

2 COMPUTING INTERMEDIATE-LEVEL VISUAL 
REPRESENTATIONS: DIRECTION OF FIGURE 

We consider how these two classes of binding can be used to compute context­
dependent (non-local) characteristics about the visual scene. An example of a 
context-dependent scene characteristic is contour ownership or direction of figure. 
Direction of figure is a useful intermediate-level visual representation since it can 
be used to organize an image into a perceptual scene (e.g. infer relative depth and 
link segregated features). Figure lA illustrates the relationship between contours 
and surfaces implied by direction of figure. 

We describe a model which utilizes both spatial and temporal binding to compute 
direction of figure (DOF). Prior to computing the DOF, the surface contours in 
the image are extracted. These contours are then temporally bound by a process 
we call "contour binding" (Finkel and Sajda, 1992). In the model, the temporal 
properties of the units are represented by a temporal binding value. We will not 
consider the details of this process except to say that units with similar temporal 
binding values are bound together while those with different values are segmented. 
In vivo, this temporal binding value may be represented by phase of neural firing, 
oscillation frequency, or some other specific temporal property of neuronal activity. 

The DOF is computed by circuitry which is organized in a columnar structure, 
shown in figure 2A. There are two primary circuits which operate to compute the 
direction of figure; one being a temporal-dependent/spatial-independent (TDSI) 
circuit selective to "closure", the other a spatial-dependent/temporal-independent 
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Figure 1: A Direction of figure as a surface representation. At point (1) the contour 
belongs to the surface contour of region A and therefore A owns the contour. This 
relationship is represented locally as a "direction of figure" vector pointing toward 
region A. Additional ownership relationships are shown for points (2) and (3). B 
Cues used in determining direction of figure . 

(SDTI) circuit selective to "similarity and proximity". There are also two secondary 
circuits which playa transient role in determining direction of figure. One is based 
on the observation that concave segments bounded by discontinuities are a cue for 
occlusion and ownership, while the other considers the direction of line endings 
as a potential cue. Figure IB summarizes the cues used to determine direction 
of figure. In this paper, we focus on the TDSI and SDTI circuits since they best 
illustrate the nature of the dual binding mechanisms. The perceptual consequences 
of attributing closure discrimination to temporal binding and similarity/proximity 
to spatial binding is illustrated in figure 3. 

2.1 TDSI CIRCUIT 

Figure 2B(i) shows the neural architecture of the TDSI mechanism. The activity 
of the TDSI circuit selective for a direction of figure a is computed by comparing 
the amount of closure on either side of a contour. Closure is computed by summing 
the temporal dependent inputs over all directions i; 

T DSlOi = [~Sf(ti) - L Sf- 180o (td] 
1 

I I 0 

(1) 

The brackets ([]) indicate an implicit thresholding (if x < 0 then [xl = 0, otherwise 
[xl = x) and Si(ti) and sf- 180° (td are the temporal dependent inputs, computed 
as; 

snt;) = { : 
{ 

(Sj > ST) 
if and 

((ti - ~t) < tj < (ti + ~t)) 
otherwise 

(2) 
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Figure 2: A Divisions, inputs, and outputs for a DOF column. B The two pri­
mary circuits operating to compute direction of figure. (i) Top view of temporal­
dependent/spatial-independent (TDSI) circuit architecture. Filled square repre­
sents position of a specific column in the network. Unfilled squares represent other 
DOF columns serving as input to this column. Bold curve corresponds to a surface 
contour in the input. Shown is the pattern of long-range horizontal connections 
converging on the right side of the column (side ex). (ii) Top view of spatial­
dependent/temporal-independent (SDTI) circuit architecture. Shown is the pattern 
of connections converging on the right side of the column (side ex). 

where ex and ex - 1800 represent the regions on either side of the contour, Sj is the 
activation of a unit along the direction i (For simulations i varies between 00 and 
3150 by increments of 45 0 ), 6.t determines the range of temporal binding values 
over which the column will integrate input, and ST is the activation threshold. The 
temporal dependence of this circuit implies that only those DOF columns having 
the same temporal binding value affect the closure computation. 

2.2 SDTI CIRCUIT 

Figure 2B(ii) illustrates the neural architecture of the SDTI mechanism. The SDTI 
circuit organizes elements in the scene based on "proximity" and "similarity" of 
orientation. Unlike the TDSI circuit which depends upon temporal binding, the 
SDTI circuit uses spatial binding to access information across the network. 

Activity is integrated from units with similar orientation tuning which lie in a 
direction orthogonal to the contour (i.e. from parallel line segments). The activity 
of the SDTI circuit selective for a direction of figure ex is computed by comparing 
input from similar orientations on either side of a contour; 

SDTlOi = _1_ (2: sf(Od - 2: sr- 180o (Od) 
Smax . . 

t I 

(3) 

where Smax is a constant for normalizing the SDTI activity between 0 and 1 and 
sf (OJ) and sf- 1800 (Od are spatial dependent inputs selective for an orientation 0, 
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Figure 3: A The model predicts that a closed figure could not be discriminated in 
parallel search since its detection depends on resource-limited temporal binding. B 
Conversely, proximal parallel segments are predicted to be discriminated in parallel 
search due to resource-free spatial binding. 

computed as; 

(4) 

where ex and ex - 180° represent the regions on either side of the contour, () is the 
orientation of the contour, i is the direction from which the unit receives input, Cij 

is the connection strength (Cij falls off as a gaussian with distance), and Sj(x, y, (}j) 

is the activation of a unit along the direction i which is mapped to retinotopic 
location (x, y) and selective for an orientation (}j (For simulations i varies between 
the following three angles; 1- (}i,1- ((}i -45°), 1- ((}i +45°)). Since the efficacy of the 
connections, Cij, decrease with distance, columns which are further apart are less 
likely to be bound together. Neighboring parallel contours generate the greatest 
activation and the circuit tends to discriminate the region between the two parallel 
contours as the figure. 

2.3 COMPUTED DOF 

The activity of a direction of figure unit representing a direction ex is given by the 
sum of the four components; 

DOF Ci = C1(TDSl Ci ) + C2(SDTrl:) + C3 (CON Ci ) + C4 (DLE Ci ) (5) 

where the constants define the contribution of each cue to the computed DOF. Note 
that in this paper we have not considered the mechanisms for computing the DOF 
given the two secondary cues (concavities (CO N Ci ) and direction of line endings 
(DLE Ci )) . The DOF activation is computed for all directions ex (For simulations ex 
varies between 0° and 315° by increments of 45°) with the direction producing the 
largest activation representing the direction of figure. 

3 SIMULATION RESULTS 

The following are simulations illustrating the role the dual binding mechanisms 
play in perceptual organization. All simulations were carried out using the NEXUS 
Neural Simulation Environment (Sajda and Finkel, 1992). 
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Figure 4: A 128x128 pixel grayscale image. B Direction of figure computed by 
the network. Direction of figure is shown as an oriented arrowhead, where the 
orientation represents the preferred direction of the DOF unit which is most active. 
C Depth of surfaces. Direction of figure relationships (such as those in the inset of 
B) are used to infer relative depth. Plot shows % activity of units in the foreground 
network- higher activity implies that the surface is closer to the viewer. 

3.1 FIGURE/GROUND AND DEPTH-FROM-OCCLUSION 

Figure 4A is a grayscale image used as input to the network. Figure 4B shows the 
direction of figure computed by the model. Note that though the surface contours 
are incomplete, the model is still able to characterize the direction of figure and 
distinguish figure/ground over most of the contour. This is in contrast to mod­
els proposing diffusion-like mechanisms for determining figure/ground relationships 
which tend to fail if complete contour closure is not realized. 

The model utilizes direction of figure to determine occlusion relationships and strat­
ify objects in relative depth, results shown in figure 4C. This method of inferring 
the relative depth of surfaces given occlusion is in contrast to traditional approaches 
utilizing T-junctions. The obvious advantage of using direction of figure is that it 
is a context-dependent feature directly linked to the representation of surfaces. 

3.2 VIVIDNESS OF PERCEPTUAL COMPLETION 

Our previous work (Finkel and Sajda, 1992) has shown that direction of figure is 
important for completion phenomena, such as the construction of illusory contours 
and surfaces. More interestingly, our model offers an explanation for differences in 
perceived vividness between different inducing stimuli. For example, subjects tend 
to rank the vividness of the illusory figures in figure 5 from left to right, with the 
figure on the left being the most vivid and that on the right the least. 

Our model accounts for this effect in terms of the magnitude of the direction of figure 
along the illusory contour. Figure 6 shows the individual components contributing 
to the direction of figure. For a typical inducer, such as the pacman in figure 6, the 
TDSI and SDTI circuits tend to force the direction of figure of the L-shaped segment 
to region 1 while the concavity/convexity transformation tries to force the direction 
of figure of the segment to be toward region 2. This transformation transiently 
overwhelms the TDSI and SDTI responses, so that the direction of figure of the 
L-shaped segment is toward region 2. However, the TDSI and SDTI activation will 
affect the magnitude of the direction of figure, as shown in figure 7. For example, 
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Figure 5: Illusory contour vividness as a function of inducer shape. Three types of 
inducers are arranged to generate an illusory square . A pacman inducer , B thick L 
inducer and C thin L inducer. Subjects rank the vividness of the illusory squares 
from left to right ((A) > (B) > (C)). 
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Figure 6: Processes contributing to the direction of figure of the L-shaped contour 
segment. The TDSI and SDTI circuits assign the contour to region 1, while the 
change of the concavity to a convexity assigns the segment to region 2. 
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Figure 7: A Activity of SDTI units for the upper left inducer of each stimulus, 
where the area of each square is proportional to unit activity. The SDTI units try 
to assign the L-shaped segment to the region of the pacman. Numerical values 
indicates the magnitude of the SDTI effect. B Magnitude of direction of figure 
along the L-shaped segment as a function of inducer shape. The direction of figure 
in all cases is toward the region of the illusory square. 
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the weaker the activation of the TDSI and SDTI circuits, the stronger the activation 
of the DOF units assigning the L-shaped segment to region 2. 

Referring back to the inducer types in figure 5, one can see that though the TDSI 
component is the same for all three inducers (i.e. all three generate the same amount 
of closure) the SDTI contribution differs, shown quantitatively in figure 7 A. The 
contribution of the SDTI circuit is greatest for the thin L inducers and least for the 
pacmen inducers-the L-shaped segments for the pacman stimulus are more strongly 
owned by the surface of the illusory square than those for the thin L inducer. This 
is illustrated in figure 7B, a plot of the magnitude of the direction of figure for each 
inducer configuration. This result can be interpreted as the model's ordering of 
perceived vividness, which is consistent with that of human observers. 

4 CONCLUSION 

In this paper we have argued for the utility of binding neural activities in both the 
spatial and temporal domains. We have shown that a scheme consisting of these 
complementary mechanisms can be used to compute context-dependent scene char­
acteristics, such as direction of figure. Finally, we have illustrated with computer 
simulations the role these dual binding mechanisms play in accounting for aspects 
of figure/ ground perception, depth-from-occlusion, and perceptual vividness of illu­
sory contours and surfaces. It is interesting to speculate on the relationship between 
these complementary binding mechanisms and the traditional distinction between 
preattentive and attentional perception. 
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