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ABSTRACT 

We propose a trajectory planning and control theory for continuous 
movements such as connected cursive handwriting and continuous 
natural speech. Its hardware is based on our previously proposed 
forward-inverse-relaxation neural network (Wada & Kawato, 1993). 
Computationally, its optimization principle is the minimum torque­
change criterion. Regarding the representation level, hard constraints 
satisfied by a trajectory are represented as a set of via-points extracted 
from a handwritten character. Accordingly, we propose a via-point 
estimation algorithm that estimates via-points by repeating the 
trajectory formation of a character and the via-point extraction from the 
character. In experiments, good quantitative agreement is found 
between human handwriting data and the trajectories generated by the 
theory. Finally, we propose a recognition schema based on the 
movement generation. We show a result in which the recognition 
schema is applied to the handwritten character recognition and can be 
extended to the phoneme timing estimation of natural speech. 

1 INTRODUCTION 

In reaching movements, trajectory formation is an ill-posed problem because the hand 
can move along an infinite number of possible trajectories from the starting to the target 
point. However, humans move an arm between two targets along consistent one of an 
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infinite number of trajectories. Therefore, the brain should be able to compute a unique 
solution by imposing an appropriate criterion to the ill-posed problem. Especially, a 
smoothness performance index was intensively studied in this context. 

Flash & Hogan (1985) proposed a mathematical model, the minimum-jerk model. Their 
model is based on the kinematics of movement, independent of the dynamics of the 
musculoskeletal system. On the other hand, based on the idea that the objective function 
must be related to dynamics, Uno, Kawato & Suzuki (1989) proposed the minimum 
torque-change criterion which accounts for the desired trajectory determination. The 
criterion is based on the theory that the trajectory of the human arm is determined so as to 
minimize the time integral of the square of the rate of torque change. They proposed the 

following quadratic measure of performance. Where -r j is the torque generated by the j­
th actuator of M actuators, and ljis the movement time. 

( 0)2 " M d-r' 
CT = r L - dt Jo j=l dt 

(1) 

Handwriting production is an attractive subject in human motor control studies. In 
cursive handwriting, a symbol must be transformed into a motor command stream. This 
transformation process raises several questions. How can the central nervous system 
(eNS) represent a character symbol for producing a handwritten letter? By what principle 
can motor planning be made or a motor command be produced? In this paper we propose 
a handwriting model whose computational theory and representation are the same as the 
model in reaching movements. Our proposed computational model for cursive 
handwriting is assumed to generate a trajectory that passes through many via-points. The 
computational theory is based on the minimum torque-change criterion, and a 
representation of a character is assumed to be expressed as a set of via-points extracted 
from a handwritten character. In reaching movement, the boundary condition is given by 
the visual information, such as the location of a cup, and the trajectory formation is based 
on the minimum torque-change criterion, which is completely the same as the model of 
handwriting (Fig. 1). However, it is quite difficult to determine the via-points in order to 
reproduce a cursive handwritten character. We propose an algorithm that can determine 
the via-points of the handwritten character, based only on the same minimization 
principle and which does not use any other ad hoc information such as zero-crossing 
velocity (Hollerbach, 1981). 
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Figure 1: A handwriting model. 
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2 PREVIOUS WORK ON THE HANDWRITING MODEL 

Several handwriting models (Hollerbach, 1981; Morasso & Mussa-Ivaldi, 1982; Edleman 
& Flash, 1987) have been proposed. Hollerbach proposed a handwriting model based on 
oscillation theory. The model basically used a vertical oscillator and a horizontal 
oscillator. Morasso & Mussa-Ivaldi proposed a trajectory formation model using a spline 
function, and realized a handwritten character using the formation model. 

Edleman & Flash (1987) proposed a handwriting model based on snap (fourth derivative 
of position) minimization. The representation of a character was four basic strokes and a 
handwritten character was regenerated by a combination of several strokes. However, 
their model was different from their theory for reaching movement. Flash & Hogan 
(1985) have proposed the minimum jerk criterion in the reaching movement. 

3 A HANDWRITING MODEL 

3.1 Trajectory formation neural network: 
Forward-Inverse Relaxation Model (FIRM) 

First, we explain the trajectory formation neural network. Because the dynamics of the 
human arm are nonlinear, finding a unique trajectory based on the minimum torque­
change criterion is a nonlinear optimization problem. Moreover, it is rather difficult. 
There are several criticisms of previous proposed neural networks based on the minimum 
torque-change criterion: (1) their spatial representation of time, (2) back propagation is 
essential, and (3) much time is required. Therefore, we have proposed a new neural 
network, FIRM(Forward-Inverse Relaxation Model) for trajectory formation (Wada & 
Kawato, 1993). This network can be implemented as a biologically plausible neural 
network and resolve the above criticisms. 

3.2 Via-point estimation model 

Edelman & Flash (1987) have pointed out the difficulty of finding the via-points in a 
handwritten character. They have argued two points: (1) the number of via-points, (2) a 
reason for the choice of every via-point locus. It is clear in approximation theory that a 
character can be regenerated perfectly if the number of extracted via-pOints is large. 
Appropriate via-points can not be assigned according to a regular sampling rule if the 
sample duration is constant and long. Therefore, there is an infinite number of 
combinations of numbers and via-point positions in the problem of extracting via-points 
from a given trajectory, and a unique solution can not be found if a trajectory reformation 
theory is not identified. That is, it is an ill-posed problem. 

The algorithm for assigning the via-points finds the via-points by iteratively activating 
both the trajectory formation module (FIRM) and the via-point extraction module (Fig. 
2). The trajectory formation module generates a trajectory based on the minimum torque­
change criterion using the via-points which are extracted by the via-point extraction 
module. The via-point extraction module assigns the via-points so as to minimize the 
square error between the given trajectory and the trajectory generated by the trajectory 
formation module. The via-point extraction algorithm will stop when the error between 
the given trajectory and the trajectory generated from the extracted via-points reaches a 
threshold. 
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Figure 2: Via-point estimation model. 9~ta(t) is the given trajectory of the j-th joint angle 
and ei (I) represents the generated trajectory. 

3.2.1 Algorithm of via-point extraction 

There are a via-point extraction procedure and a trajectory production procedure in the 
via-point extraction module. and they are iteratively computed. Trajectory production in 
the module is based on the minimum-jerk model (Flash & Hogan 1985) on a joint angle 
space. which is equivalent to the minimum torque-change model when arm dynamics are 
approximated as in the following dynamic equation: 

",i = [i Oi (j= 1 ..... M) (2) 

where Ii and iji are the inertia of the link and the acceleration of the j-th joint angle. 
respectively. 

The algorithm for via-point extraction is illustrated in Fig. 3. The procedural sequence is 
as follows: 
(Step 1) A trajectory between a starting point and a final point is generated by using the 
minimum torque-change principle of the linear dynamics model. 
(Step 2) The point with the maximum square error value between the given trajectory and 
the generated trajectory is selected as a via-point candidate. 
(Step 3) If the maximum value of the square error is less than the preassigned threshold. 
the procedure described above is finished. If the maximum value of the square error is 
greater than the threshold. the via-point candidate is assigned as via-point i and a 
trajectory is generated from the starting point through the via-point i to the final point. 
This generated trajectory is added to the trajectory that has already been generated. The 
time of the start point of the generated trajectory is a via-point located just before the 
assigned via-point i. and the time of the final point of the generated trajectory is a via­
point located just after the assigned via-point i. The position error of the start point and 
the final point equal O. since the compensation for the error has already been made. Thus, 
the boundary conditions of the generated trajectory at the start and final point become O. 
The velocity and acceleration constraints at the start and final point are set to O. 
(Step 4) By repeating Steps 2 and 3, a set of via-points is found. 

The j-th actuator velocity constraint 9!ia and acceleration constraint O!ia at the via-point i 
are set by minimizing the following equation. 

J(8!ia,O~a) = [p{ r:!" (lP)2 dt + r:} (8'i)2 dt} ~ Min (3) J,O J, ... 
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Figure 3: An algorithm for extracting via-points. 

Finally, the via-points are fed to the FIRM, and the minimum torque change trajectory is 
produced. This trajectory and the given trajectory are then compared again. If the value 
of the square error does not reach the threshold, the procedure above is repeated. 

It can be mathematically shown that a given trajectory is perfectly approximated with this 
method (completeness), and furthermore that the number of extracted via-points for a 
threshold is the minimum (optimality). (Wada & Kawato, 1994) 

4 PERFORMANCE OF THE VIA-POINT ESTIMATION MODEL 

4.1 Performance of single via-point movement 

First, we examine the performance of our proposed via-point estimation model. A result 
of via-point estimation in a movement with a via-point is shown in Fig 4. Two 
movements (T3-PI-T5 and T3-P2-T5) are examined. The white circle and the solid lines 
show the target points and measured trajectories, respectively. PI and P2 show target 
via-points. The black circle shows the via-points estimated by the algorithm. The 
estimated via-points were close to the target via-points. Thus, our proposed via-point 
estimation algorithm can find a via-point on the given trajectory. 
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Figure 4: A result of via-point estimation in a movement with a via-point. 

4.2 Performance of the handwriting model 

Fig. 5 shows the case of cursive connected handwritten characters. The handwriting 
model can generate trajectories and velocity curves of cursive handwritten characters that 
are almost identical to human data. The estimated via-points are classified into two 
groups. The via-points in one group are extracted near the minimum points of the 
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Figure 5: Estimated via-points in cursive handwriting. (a) and (b) show the trajectory and 
tangential velocity profile, respectively. The via-point estimation algorithm extracts a via­
point (segmentation point) between characters. 

velocity profile. The via-points of the other group are assigned to positions that are 
independent of the above points. Generally, the minimums of the velocity are considered 
to be the feature points of the movement. However, we confirmed that a given trajectory 
can not be reproduced by using only the first group of via-points. This finding shows that 
the second group of via-points is important. Our proposed algorithm based on the 
minimization principle can estimate points that can not be selected by any kinematic 
criterion. Funhermore, it is important in handwritten character recognition that the via­
point estimation algorithm extracts via-points between characters, that is, their 
segmentation points. 

5 FROM FORMATION TO RECOGNITION 

5.1 A recognition model 

Next, we propose a recognition system using the trajectory formation model and the via­
point estimation model. There are several reports in the literature of psychology which 
suggest that the formation process is related to the recognition process. (Liberman & 
Mattingly, 1985; Freyd, 1983) 

Here, we present a pattern recognition model that strongly depends on the handwriting 
model and the via-point estimation model (Fig.6). (1) The features of the handwritten 
character are extracted by the via-point estimation algorithm. (2) Some of via-points are 
segmented and normalized in space and time. Then, (3) a trajectory is regenerated by 
using the normalized via-points. (4) A symbol is identified by comparing the regenerated 
trajectory with the template trajectory. 
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Figure 6: Movement pattern recognition using extracted via-points obtained through 
movement pattern generator 
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1 :BAD : (0,17) (18,35) (36,52) 
2 :BAD : (0,18) (18,35) (36,52) 
3 :BAD : (0,17) (18,35) (35,52) 

rItwz- 1 :DEAR : (0,8) (9,18) (19,31) (30,51) 
2 :DEAR : (0,8) (9,18) (19,31) (30,50) 
3 :DEAR : (0,8) (9,18) (19,30) (30,51) 

Figure 7: Results of character recognition 

5.2 Performance of the character recognition model 

Fig. 7 shows a result of character recognition. The right-hand side shows the recognition 
results for the left-hand side. The best three candidates for recognition are listed. 
Numerals in parentheses show the number of starting via-points and the final via-point 
for the recognized character. 

5.3 Performance of the estimation of timing of phonemes in real speech 

Fig. 8 shows the acoustic waveform, the spectrogram, and the articulation movement 
when the sentence" Sam sat on top of the potato cooker ... " is spoken. The phonemes are 
identified, and the vertical lines denote phoneme midpoints. White circles show the via­
points estimated by our proposed algorithm. Rather good agreement is found between the 
estimated via-points and the phonemes. 

From this experiment, we can point out two important possibilities for the estimation 
model of phoneme timing. The first possibility concerns speech recognition, and the 
second concerns speech data compression. It seems possible to extend the via-point 
estimation algorithm to speech recognition if a mapping from acoustic to articulator 
motion is identified (Shirai & Kobayashi, 1991, Papcun et al., 1992). Furthermore, with 
training of a forward mapping from articulator motion to acoustic data (Hirayama et al., 
1993), the via-point estimation model can be used for speech data compression. 

6 SUMMARY 
We have proposed a new handwriting model. In experiments, good qualitative and 
quantitative agreement is found between human handwriting data and the trajectories 
generated by the model. Our model is unique in that the same optimization principle and 
hard constraints used for reaching are also used for cursive handwriting. Also, as 
opposed to previous handwriting models, determination of via-points is based on the 
optimization principle and does not use a priori knowledge. 

We have demonstrated two areas of recognition, connected cursive handwritten character 
recognition and the estimation of phoneme timing. We incorporated the formation model 
into the recognition model and realized the recognition model suggested by Freyd (1983) 
and Liberman and Mattingly(1985). The most important point shown by the models is 
that the human recognition process can be realized by specifying the human formation 
process. 
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Figure 8: Estimation result of phoneme time. Temporal acoustics and vertical 
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are shown with overlaid via-point trajectories. Vertical lines correspond to acoustic 
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