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Abstract 

This paper proposes a practical optimization method for layered 
neural networks, by which the optimal model and parameter can 
be found simultaneously. 'i\Te modify the conventional information 
criterion into a differentiable function of parameters, and then, min­
imize it, while controlling it back to the ordinary form. Effective­
ness of this method is discussed theoretically and experimentally. 

1 INTRODUCTION 

Learning in art.ificialneural networks has been studied based on a statist.ical frame­
work, because the statistical theory clarifies the quantitative relation between t.he 
empirical error and the prediction error. Let us consider a function <p( w; x) from 
the input space R/\ to the out.put space R L with a paramet.er 'lV. "\i\Te assume that 
training samples {(.1:j, yd}~l are taken from t.he true probabilit.y density Q(x, y). 
Let us define the empirical error by 

(1) 
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and the prediction error by 

E(w) == J J lIy - ip(w; x)11 2Q(x, y)dxdy. (2) 

If we find a parameter w* which minimizes Eemp( w), then 

* 2(F(w*) + 1) * 1 
< E(w ) >== (1 + NL ) < Eemp{w ) > +o(N)' (3) 

where < . > is the average value for the training samples, o( 1/ N) is a small term 
which satisfies No(I/N) ~ 0 when N ~ 00, and F(w*), N, and L are respectively 
the numbers of the effective parameters of w*, the training samples, and output 
units. 

Although the average < . > cannot be calculated in the actual application, the 
optimal model for the minimum prediction error can be found by choosing the 
model that minimizes the Akaike informat.ion crit.erion (AIC) [1], 

* 2(F(w*) + 1) * 
J(w)=(I+ NL )Eemp(w). (4) 

This method was generalized for arbitrary distance [2]. The Bayes informat.ion 
criterion (BIC) [3] and the minimum descript.ion lengt.h (MDL) [4] were proposed 
to overcome the inconsistency problem of AIC that the true model is not always 
chosen even when N ~ 00. 

The above information criteria have been applied to the neural network model selec­
tion problem, where the maximum likelihood estimator w* was calculated for each 
model, and then information criteria were compared. Nevertheless, the practical 
problem is caused by the fact. that we can not always find the ma..ximum likelihood 
estimator for each model, and even if we can. it takes long calculation time. 

In order to improve such model selection procedures, this paper proposes a prac­
tical learning algorithm by which the optimal model and parameter can be found 
simultaneously. Let us consider a modified information criterion, 

2(FuCw) + 1) 
Ju(w) == (1+ NL )Eemp(w). (5) 

where a > 0 is a parameter and Fa(w) is a Cl-class function which converges 
to F(w) when a ~ O. \Ve minimize Ja(w), while controlling a as a ~ 0, To 
show effectiveness of this method, we show experimental results, and discuss the 
theoretical background. 

2 A Modified Information Criterion 

2.1 A Formal Information Criterion 

Let us consider a conditional probability distribut.ion. 

1 Ily-ip(w;x)W 
P{W,O";ylx) = ( 2)L/2 exp(- ? 2 ), 2nO" _0" 

(6) 



An Optimization Method of Layered Neural Networks 295 

where a function rp( w; x) = {rpi(W; x)} is given by the three-layered perceptron, 

II l\" 

rpi(W; :1:) = p(WiO + L Wij p(WjO + L wjkxd), (7) 
j=1 k=l 

and W = {w iO, Wij} is a set of biases and weights and p(.) is a sigmoidal function. 

Let A1max be the full-connected neuralnctwork model with 1'1." input units, H hidden 
units, and L output units, and /vt be the family of all models made from A1max by 
pruning weights or eliminating biases. \Vhcn a sct of training samples {(Xi, vd }[~:1 
is given, we define an empirical loss and the prediction loss by 

L(w,O") 

1 N 
- N' L log P(w, 0"; vi/xd, 1 _ 

1=1 

-J J Q(:l",v) 10gP(w,0"; Vlx)d:t:dy. 

(8) 

(9) 

Minimizing Lemp (w, 0") is equivalent to minimizing Eelllp{ w), and mIIllmlzing 
L(w, 0") is equivalent. to minimizing E(w). \Ye assume t.hat. t.here exists a parameter 
(wAI'O"AI) which minimizes Lemp{W,CT) in each modcl.H E A1. By the theory of 
AIC, we have the following formula, 

(10) 

Based on this property, let us define a formal information criterion I (Af) for a model 
Af by 

I{Jlf) = 2N Lemp{wAI' O"~I ) + A( Fo (wAf) + 1) (11) 

where A is a constant and Fo (w) is the number of nonzero parameters in w, 

L Jl II l\ 

Fo{w) = L L fO(Wij) + L L fO{Wjd· (12) 
i=1 j=O j=lk=O 

where fo (x) is 0 if x = 0, or 1 if otherwise. I{1U) is formally equal to AIC if 
A = 2, or l\'IDL if A = 10g{N). Notc that F(w) ~ Fo{w) for arbitrary wand that 
F( wAJ ) = Fo (w AI) if and only if the Fisher information mat.rix of the model !II is 
positive definite. 

2.2 A Modified Information Criterion 

In order to find the optimal model and parameter simultaneously, we define a mod­
ified information critcrion. For Q' > O. 

2NLemp(w,0") + A{Fo{w) + 1), (13) 
L Jl H I{ 

Fo{w) LLfO'{Wij) + LLfo{wjJ.o), (14) 
i=l j=O j=ll,·=O 

where fa-(x) satisfies the following two conditions. 
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(1) 10.(x) -+ 10(x) when 0: -+ O. 
(2) If Ixl :::; Ivi then 0:::; 10.(.1:) :::; 10(Y) :::; 1. 

For example, 1- exp( _x2 /0:2 ) and 1-1/(1 + (x/0:)2) satisfy this condition. Based 
on these definitions, we have the following theorem. 

Theorem min 1(111) = lim min 10 (w, 0'). 
AI EM o,~o W,CT 

This theorem shows that the optimal model and parameter can be found by mini­
mizing 1a(1O, 0') while controlling 0: as 0: -+ 0 (The parameter 0: plays the same role 
as the temperature in the simulated annealing). As Fo.(x) -+ Fo(x) is not uniform 
convergence, this theorem needs the second condition on 1 a (:t'). (For proof of the 
theorem, see [5]). 

If we choose a different.iable function for 10 (10), then its local minimum can be 
found by the steepest descent method, 

dw 0 dO' 0 
dt =-o10 10 (w,0'), Tt=-oO'la(w,O'). (15) 

These equat.ions result in a learning dynamics, 

N 0 A A2 0F 
~1o = -TJ 2: {ow IIvi - ';'(10; .'ri) 112 + ; Ot;'}, (16) 

i=l 

where 0'2 = (I/NL)"'£//=lllvi - ,;,(w;:rdIl 2 . and 0: is slowly controlled as 0: -+ O. 
This dynamics can be understood as the (,lTor backpropagation with the added 
term. 

3 Experimental Results 

3.1 The true distribution is contained in the models 

First, we consider a case when t.he true distribut.ion is cont.ained in the model 
family M. Figure 1 (1) shows the true model from which t.he training samples were 
taken. One thousand input samples were t.aken from the uniform probability on 
[-0.5,0.5] x [-0.5,0.5] x [-0.5,0.5]. The output samples were calculat.ed by the 
network in Figure 1 (1), and noizes were added which were taken from a normal 
distribution with the expectation 0 and the variance 3.33 x 10-3 . Ten thousands 
testing samples were t.aken from t.he same distribut.ion. "Te used 10 ('IV) = 1 -
exp( _w2 /20'2) as a soft.ener function, and t.he "annealing schedule" of 0 ' was set 
as 0:( n) = 0'0 (1 - n/ nmax ) + €, where 'Il is the t.raining cycle number, 0 '0 = 3.0, 
nmax = 25000, and € = 0.01. Figure 1 (2) shows the full-connected nlOdel Afmax 

with 10 hidden units, which is the initial model. In the training, the learning speed 
TJ was set as 0.1. 

We compared the empirical errors and t.he prediction errors for several cases for A 
(Figure 1 (5), (6)). If A = 2, the crit.erion is AIC, and if A = 10g(N) = 6.907, it is 
BIC or MDL. Figure 1 (3) and (4) show the optimized models and parameters for 
the criteria ,vith A = 2 and A = 5. \\Then .4 = 5, t.he true model could be found. 
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3.2 The true distribution is not contained 

Second, let. us consider a case that the true distribution is not contained in the 
model family. For t.he training samples and the testing samples, we used the same 
probability density as the above case except that the function was 

(17) 

Figure 2 (1) and (2) show the training error and the prediction error, respectively. 
In t.his case, the best generalized model was found by AIC, shown in Figure 3. In 
the optimized network, Xl and X2 were almost separated from X3, which means that 
the network could find the structure of the true model in eq.{17.) 

The practical application to ultrasonic image reconstruct.ion is shown in Figure 3. 

4 Discussion 

4.1 An information criterion and pruning weights 

If P(w, u; ylx) sufficiently approximates Q(YI:~~ ) and N is sufficiently large, we have 

(18) 

where Z N = Lemp{ 'LV j\f) - LC(iJ j\f) and 'IV j\f is the parameter which minimizes L( 'lV, u) 
in the model lIf. Although < ZN >= 0 resulting in equation (10), its standard 
deviation has the same order as (1/ VN). However, if 1111 C 1If2 or lIt!1 ~ lith, then 
'Ii; 1111 and 'LV 1\12 expected to be almost common. and it doesn't essentially affect the 
model selection problem [2]. 

The model family made by pruning weights or by eliminating biases is not. a totally 
ordered set but a partially ordered set for the order "c". Therefore, if a model 
111 E M is select.ed, it is the optimal model in a local model family M' = {1If' E 
Mj 1If' C 111 or 111' ~ Af}, but it may not be the optimal model in the global 
family M. Artificial neural networks have the local minimum problem not. only in 
the parameter space but also in the model family. 

4.2 The degenerate Fisher information matrix. 

If the true probability is contained in the model and the number of hidden units is 
larger than necessary one, then the Fisher informat.ion matrix is degenerated, and 
consequently. the maximum likelihood est.imator is not. subject t.o the asympt.otically 
normal distribution [6]. Therefore, the prediction error is not given by eq.(3), or 
AIC cannot. be deriyed. However, by the proposed method, the selected model has 
the non-degenerated Fiher information matrix, because if it is degenerate then the 
modified information crit.erion is not. minimized. 



298 Watanabe 

~ -
N(O,3.33 X 10 ) 

10 

t 

output 
unit "~,. 

-2.2 ~ 
2.27 , 

-0.7 -2.9 

(1) True model (2) Initial model for learning. 

(3) Optimized by AIC(A=2) 

E (w*) = 3.29 X 10 -3 
emp 3 
E(w~ = 3.39 X 10-

(4) Optimized by A=5 

~m'w*) = 3.31 X 10 -3 

*' -3 E(W) = 3.37XlO 
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3.35 initial 1 
3.45 3 
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(5) The emprical error (6) The prediction error 

Figure I: True distribution is contained in the models. 
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(2) The prediction error (3) Optimized by AI C (A=2). 

Figure 2: True distribution is not contained in the models. 



An Optimization Method of Layered Neural Networks 299 

(1) An Ultrasonic Imaging System (2) Sample Objects. 

Reconstructed Image 

15 

units 

neighborhood .. '. : '. : . 

~ltrasOnic Image 32X32 

(3) Neural Net.works 

Images for Traiuillg Images for Tcstiug 

Origillal Illlagcs--~~--+--~~---+----~ 

Restored using LS:-'I ----1-------+--------1 

Restored using .\IC-----t------+------l 

f-~"" ": 
-

., - ~ . 

Restored using :.IDL_-'--_----''---____ -'--____ ..-.J 

(4 )Rcstored Images 

Figure 3: Practical Applicat.ion t.o Image Rest.oration 

The propo~ed method was applied t.o ultrasonic image rest.orat.ioll. Figure 3 (1). (2), 
(3), (4) respectively show an ultrasonic imaging system, the sample objects, and a 
neural network for image restorat.ion, and the original restored images. The number 
of paramet.ers optimized by LS~L AIC. and ':\IDL were respect.in-Iy 166. 138. and 
57. Rather noizeless images w('re obtained using the modified AIC or 1IDL. For 
example, the '"Tail of R" ·was clearly restored using AIC. 
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4.3 Relation to another generalization methods 

In the neural information processing field, many methods have been proposed for 
preventing the over-fit.ting problem. One of t.he most. famous met.hods is the weight 
decay method, in which we assume a priori probabilit.y distribut.ion on the parameter 
space and minimize 

El (w) = Eemp( 10) + '\C( 10), (19) 

where ,\ and C(w) are chosen by several heuristic methods [7]. The BIC is the 
information criterion for such a met.hod [3], and the proposed method may be 
understood as a met.hod how to cont.rol ,\ and C( w). 

5 Conclusion 

An optimization met.hod for layered neural networks was proposed ba.<;ed on the 
modified informat.ion criterion, and its effectiveness was discussed theoretically and 
experimentally. 
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