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.Abstract 

Human genes are not continuous but rather consist of short cod­
ing regions (exons) interspersed with highly variable non-coding 
regions (introns). We apply HMMs to the problem of modeling ex­
ons, introns and detecting splice sites in the human genome. Our 
most interesting result so far is the detection of particular oscilla­
tory patterns, with a minimal period ofroughly 10 nucleotides, that 
seem to be characteristic of exon regions and may have significant 
biological implications. 
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Figure 1: Structure of eukaryotic genes (not to scale: introns are typically much 
longer than exons). 

1 INTRODUCTION 

The genes of higher organisms are not continuous. Rather, they consist of relatively 
short coding regions called exons interspersed with non-coding regions of highly vari­
able length called introns (Fig. 1). A complete gene may comprise as many as fifty 
exons. Very often, exons encode discrete functional or structural units of proteins. 
Prior to the translation of genes into proteins, a complex set of biochemical mecha­
nisms is responsible for the precise cutting of genes at the splice junctions, i.e. the 
boundaries between introns and exons, and the subsequent removal and ligation 
which results in the production of mature messenger RNA. The translation ma­
chinery of the cell operates directly onto the mRNA, converting a primary sequence 
of nucleotides into the corresponding primary sequence of amino acids, according 
to the rules of the genetic code. The genetic code converts every three contiguous 
nucIeotides, or codons, into one of the twenty amino acids (or into a stop signal). 
Therefore the splicing process must be exceedingly precise since a shift of only one 
base pair completely upsets the codon reading frame for translation. Many details 
of the splicing process are not known; in particular it is not clear how acceptor sites 
(i.e. intron/exon boundaries) and donor sites (i.e. exon/intron boundaries) are rec­
ognized with extremely high accuracy. Both acceptor and donor sites are signaled 
by the existence of consensus sequences, i.e. short sequences of nucleotides which 
are highly conserved across genes and, to some extent, across species. For instance, 
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most introns start with GT and terminate with AG and additional patterns can be 
detected in the proximity of the splice sites. The main problem with consensus 
sequences, in addition to their variability, is that by themselves they are insufficient 
for reliable splice site detection. Indeed, whereas exons are relatively short with an 
average length around 150 nucleotides, introns are often much longer, with several 
thousand of seemingly random nucleotides. Therefore numerous false positive con­
sensus signals are bound to occur inside the introns. The GT dinucleotide constitutes 
roughly 5% of the dinucleotides in human DNA, but only a very small percentage of 
these belongs to the splicing donor category, in the order of 1.5%. The dinucleotide 
AG constitutes roughly 7.5% of all the dinucleotides and only around 1% of these 
function as splicing acceptor sites. In addition to consensus sequences at the splice 
sites, there seem to exist a number of other weak signals (Senapathy (1989), Brunak 
et a1. (1992)) embedded in the 100 intron nucleotides upstream and downstream of 
an exon. Partial experimental evidence seems also to suggest that the recognition 
of the acceptor and donor boundaries of an exon may be a concerted process. 

In connection with the current exponential growth of available DNA sequences and 
the human genome project, it has become essential to be able to algorithmically 
detect the boundaries between exons and introns and to parse entire genes. Unfor­
tunately, current available methods are far from performing at the level of accuracy 
required for a systematic parsing of the entire human genome. Most likely, gene 
parsing requires the statistical integration of several weak signals, some of which are 
poorly known, over length scales of a few hundred nucleotides. Furthermore, initial 
and terminal exons, lacking one of the splice sites, need to be treated separately. 

2 HMMs FOR BIOLOGICAL PRIMARY SEQUENCES 

The parsing problem has been tackled with classical statistical methods and more 
recently using neural networks (Lapedes (1988), Brunak (1991)), with encouraging 
results. Conventional neural networks, however, do not seem ideally suited to han­
dle the sort of elastic deformations introduced by evolutionary tinkering in genetic 
sequences. Another trend in recent years, has been the casting of DNA and protein 
sequences problems in terms of formal languages using context free grammars, au­
tomata and Hidden Markov Models (HMMs). The combination of machine learning 
techniques which can take advantage of abundant data together with new flexible 
representations appears particularly promising. HMMs in particular have been used 
to model protein families and address a number of task such as multiple alignments, 
classification and data base searches (Baldi et al. (1993) and (1994); Haussler et a1. 
(1993); Krogh et al. (1994a); and references therein). It is the success obtained with 
this method on protein sequences and the ease with which it can handle insertions 
and deletions that naturally suggests its application to the parsing problem. 

In Krogh et al. (1994b), HMMs are applied to the problem of detecting coding/non­
coding regions in bacterial DNA (E. coli), which is characterized by the absence 
of true introns (like other prokaryotes). Their approach leads to a HMM that 
integrates both genic and intergenic regions, and can be used to locate genes fairly 
reliably. A similar approach for human DNA, that is not based on HMMs, but 
uses dynamic programming and neural networks to combine various gene finding 
techniques, is described in Snyder and Stormo (1993). In this paper we take a 
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Figure 2: Entropy of emission distribution of main states. 

first step towards parsing the human genome with HMMs by modeling exons (and 
flanking intron regions). 

As in the applications of HMMs to speech or protein modeling, we use left-right 
architectures to model exon regions, intron regions or their boundaries. The ar­
chitectures typically consist of a backbone of main states flanked by a sequence of 
delete states and a sequence of insert states, with the proper interconnections (see 
Baldi et al. (1994) and Krogh et al. (1994) for more details and Fig. 4 below). The 
data base used in the experiments to be described consists of roughly 2,000 human 
internal exons, with the corresponding adjacent introns, extracted from release 78 
of the GenBank data base. It is essential to remark that, unlike in the previous ex­
periments on protein families, the exons in the data base are not directly related by 
evolution. As a result, insertions and deletions in the model should be interpreted 
in terms of formal operations on the strings rather than evolutionary events. 

3 EXPERIMENTS AND RESULTS 

A number of different HMM training experiments have been carried using different 
classes of sequences including exons only, flanked exons (with 50 or 100 nucleotides 
on each side), introns only, flanked acceptor and flanked donor sites (with 100 
nucleotides on each side) and slightly different architectures and learning algorithms. 
Only a few relevant examples will be given here. 
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Figure 3: Emission distribution from main states. 

In an early experiment, we trained a model of length 350 using 500 flanked ex­
ons, with 100 nucleotides on each side, using gradient descent on the negative log­
likelihood (Baldi and Chauvin (1994)). The exons themselves had variable lengths 
between 50 and 300. The entropy plot (Fig. 2), after 7 gradient descent training 
cycles, reveals that the HMM has learned the acceptor site quite well but appears 
to have some difficulties with the donor site. One possible contributing factor is 
the high variability of the length of the training exons: the model seems to learn 
two donor sites, one for short exons and one for the other exons. The most striking 
pattern, however, is the greater smoothness of the entropy in the exon region. In 
the exon region, the entropy profile is weakly oscillatory, with a period of about 
20 base pairs. Discrimination and t-tests conducted on this model show that it 
is definitely capable of discriminating exon regions, but the confidence level is not 
sufficient yet to reliably search entire genomes. 

A slightly different model was subsequently trained using again 500 flanked exons, 
with the length of the exons between 100 and 200 only. The probability of emitting 
each one of the four nucleotides, across the main states of the model, are plott.ed 
in Fig. 3, after the sixt.h gradient descent training cycle. Again the donor site 
seems harder to learn than the acceptor site. Even more striking are the clear 
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Figure 4: The repeated segment of the tied model. Note that position 15 is identical 
to position 5. 

oscillatory patterns present in the exon region, characterized by a minimal period 
of 10 nucleotides, with A and G in phase and C and T in anti-phase. 

The fact that the acceptor site is easier to learn could result from the fact that exons 
in the training sequences are always flanked by exactly 100 nucleotides upstream. 
To test this hypothesis, we trained a similar model using the same sequences but 
in reverse order. Surprisingly, the model still learns the acceptor site (which is 
now downstream from the donor site) much better than the donor site. The os­
cillatory pattern in the reversed exon region is still present. The oscillations we 
observe could also be an artifact of the method: for instance, when presented with 
random training sequences, oscillatory HMM solutions could appear naturally as 
local optima of the training procedure. To test this hypothesis, we trained a model 
using random sequences of similar average composition as the exons and found no 
distinct oscillatory patterns. We also checked that our data base of exons does not 
correspond prevalently to a-helical domains of proteins. 

To further test our findings, we trained a tied exon model with a hard-wired peri­
odicity of 10. The tied model consists of 14 identical segments of length 10 and 5 
additional positions in the beginning and end of the model, making a total length 
of 150. During training the segments are kept identical by tying of the parameters, 
i.e. the parameters are constrained to be exactly the same throughout learning, as 
in the weight sharing procedure for neural networks. The model was trained on 800 
exon sequences of length between 100 and 200, and it was tested on 262 different 
sequences. The parameters of the repeated segment, after training, are shown in 
Fig. 4. Emission probabilities are represented by horizontal bars of corresponding 
proportional length. There is a lot of structure in this segment. The most promi­
nent feature is the regular expression [AT][AT]G at position 12-14. (The regular 
expression means "anything but T followed by A or T followed by G".) The same 
pattern was often found at positions with very low entropy in the "standard models" 
described above. In order to test the significance, the tied model was compared to a 
standard model of the same length. The average negative log-likelihood (NNL) they 
both assign to the exon sequences and to random sequences of similar composition, 
as well as their number of parameters are shown in the table below. 
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Model Scores NLL training NLL testing # parameters 
Standard model 

203.2 200.3 2550 with random seqs 
Standard model 

198.8 196.4 2550 with real seqs 
Tied model 

198.6 195.6 340 with real seqs 

The tied model achieves a level of performance comparable to the standard model 
but with significantly less free parameters, and therefore a period of 10 in the exons 
seems to be a strong hypothesis. Note that the period of the pattern is not strictly 
10, and we found almost equally good models with a built-in period of 9 or 11. 

The type of left-to-right architecture we have used is not the ideal model of an exon, 
because of the large length variations. It would be desirable to have a model with 
a loop structure such that the segment can be entered as many times as necessary 
for any given exon (see Krogh et al. (1994b) for a loop structure used for E. coll 
DNA). This is one of the future lines of research. 

4 CONCLUSION 

In summary, we are applying HMMs and related methods to the problems of 
exon/intron modeling and human genome parsing. Our preliminary results show 
that acceptor sites are intrinsically easier to learn than donor sites and that very 
simple HMM models alone are not sufficient for reliable genome parsing. Most im­
portantly, interesting statistical 10 base oscillatory patterns have been detected in 
the exon regions. If confirmed, these patterns could have significant biological and 
algorithmic implications. These patterns could be related to the superimposition 
of several simultaneous codes (such as triplet code and frame code), and/or to the 
way DNA is wrapped around histone molecules (Beckmann and Trifonov (1991)). 
Presently, we are investigating their relationship to reading frame effects by training 
several HMM models using a data base of exons with the same reading frame. 
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