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Abstract 

• In 

This paper describes probabilistic methods for novelty detection 
when using pattern recognition methods for fault monitoring of 
dynamic systems. The problem of novelty detection is particular­
ly acute when prior knowledge and training data only allow one 
to construct an incomplete classification model. Allowance must 
be made in model design so that the classifier will be robust to 
data generated by classes not included in the training phase. For 
diagnosis applications one practical approach is to construct both 
an input density model and a discriminative class model. Using 
Bayes' rule and prior estimates of the relative likelihood of data 
of known and unknown origin the resulting classification equations 
are straightforward. The paper describes the application of this 
method in the context of hidden Markov models for online fault 
monitoring of large ground antennas for spacecraft tracking, with 
particular application to the detection of transient behaviour of 
unknown origin. 

1 PROBLEM BACKGROUND 

Conventional control-theoretic models for fault detection typically rely on an accu­
rate model ofthe plant being monitored (Patton, Frank, and Clark, 1989). However, 
in practice it common that no such model exists for complex non-linear systems. 
The large ground antennas used by JPL's Deep Space Network (DSN) to track 
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Figure 1: Block diagram of typical Deep Space Network downlink 

planetary spacecraft fall into this category. Quite detailed analytical models exist 
for the electromechanical pointing systems. However, these models are primarily 
used for determining gross system characteristics such as resonant frequencies; they 
are known to be a poor fit for fault detection purposes. 

We have previously described the application of adaptive pattern recognition meth­
ods to the problem of online health monitoring of DSN antennas (Smyth and Mell­
strom, 1992; Smyth, in press). Rapid detection and identification of failures in the 
electromechanical antenna pointing systems is highly desirable in order to minimize 
antenna downtime and thus minimise telemetry data loss when communicating with 
remote spacecraft (see Figure 1). Fault detection based on manual monitoring of 
the various antenna sensors is neither reliable or cost-effective. 

The pattern-recognition monitoring system operates as follows. Sensor data such as 
motor current, position encoder, tachometer voltages, and so forth are synchronous­
ly sampled at 50Hz by a data acquisition system. The data are blocked off into 
disjoint windows (200 samples are used in practice) and various features (such as 
estimated autoregressive coefficients) are extracted; let the feature vector be fl. 

The features are fed into a classification model (every 4 seconds) which in turn pro­
vides posterior probability estimates of the m possible states of the system given the 
estimated features from that window, p(wdfl). WI corresponds to normal conditions, 
the other Wi'S, 1 ~ i ~ m, correspond to known fault conditions. 

Finally, since the system has "memory" in the sense that it is more likely to remain 
in the current state than to change states, the posterior probabilities need to be 
correlated over time. This is achieved by a standard first-order hidden Markov 
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model (HMM) which models the temporal state dependence. The hidden aspect 
of the model reflects the fact that while the features are directly observable, the 
underlying system states are not, i.e., they are in effect "hidden." Hence, the purpose 
of the HMM is to provide a model from which the most likely sequence of system 
states can be inferred given the observed sequence of feature data. 

The classifier portion of the model is trained using simulated hard ware faults. The 
feed-forward neural network has been the model of choice for this application be­
cause of its discrimination ability, its posterior probability estimation properties 
(Richard and Lippmann, 1992; Miller, Goodman and Smyth, 1993) and its rel­
atively simple implementation in software. It should be noted that unlike typical 
speech recognition HMM applications, the transition probabilities are not estimated 
from data but are designed into the system based on prior knowledge of the sys­
tem mean time between failure (MTBF) and other specific knowledge of the system 
configuration (Smyth, in press). 

2 LIMITATIONS OF THE DISCRIMINATIVE MODEL 

The model described above assumes that there are m known mutually exclusive and 
exhaustive states (or "classes") of the system, WI, ... ,Wm . The mutually exclusive 
assumption is reasonable in many applications where multiple simultaneous failures 
are highly unlikely. However, the exhaustive assumption is somewhat impractical. 
In particular, for fault detection in a complex system such as a large antenna, there 
are thousands of possible fault conditions which might occur. The probability of 
occurrence of any single condition is very small, but nonetheless there is a significant 
probability that at least one of these conditions will occur over some finite time. 
While the common faults can be directly modelled it is not practical to assign model 
states to all the other minor faults which might occur. 

As discussed in (Smyth and Mellstrom, 1992; Smyth 1994) a discriminative model 
directly models P(Wi I~), the posterior probabilities of the classes given the feature 
data, and assumes that the classes WI, ... ,Wm are exhaustive. On the other hand, a 
generative model directly models the probability density function of the input data 
conditioned on each class, p(~IWi)' and then indirectly determines posterior class 
probabilities by application of Bayes' rule. Examples of generative classifiers include 
parametric models such as Gaussian classifiers and memory-based methods such as 
kernel density estimators. Generative models are by nature well suited to novelty 
detection whereas discriminative models have no built-in mechanism for detecting 
data which are different to that on which the model was trained. However, there 
is a trade-off; because generative models typically are doing more modelling than 
just searching for a decision boundary, they can be less efficient (than discriminant 
methods) in their use of the data. For example, generative models typically scale 
poorly with input dimensionality for fixed training sample size. 

3 HYBRID MODELS 

A relatively simple and practical approach to the novelty detection problem is to 
use both a generative and discriminative classifier (an idea originally suggested to 
the author by R. P. Lippmann). An extra "m+ lth" state is added to the model to 
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cover "all other possible states" not accounted for by the known m states. In this 
framework, the posterior estimates of the discriminative classifier are conditioned 
on the event that the data come from one of the m known classes . 

Let the symbol w{1 , .. . ,m} denote the event that the true system state is one of the 
known states, let Wm+l be the unknown state, and let p(wm+1I~) be the posterior 
probability that the system is in an unknown state given the data. Hence, one can 
estimate the posterior probability of individual known states as 

(1) 

where Pd(wd~,w{1,,, . ,m}) is the posterior probability estimate of state i as provided 
by a discriminative model, i.e., given that the system is in one of the known states. 

The calculation of p(wm+ll~) can be obtained via the usual application of Bayes' 
rule if P(~lwm+d, p(wm+d, and P(~IW{l, ,, . ,m}) are known: 

( I(}) - P(~lwm+dp(wm+d 
P Wm+l - (I ( I ""m' - P ~ wm+dp(wm+d + P ~ w{1, .. . ,m}) L...Ji p(Wi) 

(2) 

Specifying the prior density P(~lwm+d, the distribution of the features conditioned 
on the occurrence of the unknown state, can be problematic. In practice we have 
used non-informative Bayesian priors for P(~lwm+d over a bounded space of feature 
values (details are available in a technical report (Smyth and Mellstrom, 1993)) , 
although the choosing of a prior density for data of unknown origin is basically 
ill-posed. The stronger the constraints which can be placed on the features the 
narrower the resulting prior density and the better the ability of the overall model 
to detect novelty. If we only have very weak prior information, this will translate 
into a weaker criterion for accepting points which belong to the unknown category. 

The term P(Wm+l) (in Equation (2)) must be chosen based on the designer's prior 
belief of how often the system will be in an unknown state - a practical choice is 
that the system is at least as likely to be in an unknown failure state as any of the 
known failure states. 

The P(~IW{l, ,, .,m}) term in Equation (2) is provided directly by the generative mod­
el. Typically this can be a mixture of Gaussian component densities or a kernel 
density estimate over all of the training data (ignoring class labels) . In practice, 
for simplicity of implementation we use a simple Gaussian mixture model. Further­
more, because of the afore-mentioned scaling problem with input dimensions, only 
a subset of relatively significant input features are used in the mixture model. A 
less heuristic approach to this aspect of the problem (with which we have not yet 
experimented) would be to use a method such as projection pursuit to project the 
data into a lower dimensional subspace and perform the input density estimation in 
this space. The main point is that the generative model need not necessarily work 
in the full dimensional space of the input features. 

Integration of Equations (1) and (2) into the hidden Markov model scheme is s­
traightforward and is not derived here - the HMM now has an extra state, "un­
known." The choice oftransition probabilities between the unknown and other states 
is once again a matter of design choice. For the antenna application at least, many 
of the unknown states are believed to be relatively brief transient phenomena which 
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last perhaps no longer than a few seconds: hence, the Markov matrix is designed 
to reflect these beliefs since the expected duration of any state d[wd (in units of 
sampling intervals) must obey 

1 
d[wd =--

I- PH 
(3) 

where Pii is the self-transition probability of state Wi. 

4 EXPERIMENTAL RESULTS 

For illustrative purposes the experimental results from 2 particular models are com­
pared. Each was applied to monitoring the servo pointing system of a DSN 34m 
antenna at Goldstone, California. The models were implemented within Lab View 
data acquisition software running in real-time on a Macintosh II computer at the an­
tenna site. The models had previously been trained off-line on data collected some 
months earlier. 12 input features were used consisting of estimated autoregressive 
coefficients and variance terms from each window of 200 samples of multichannel 
data. For both models a discriminative feedforward neural network model (with 8 
hidden units, sigmoidal hidden and output activation functions) was trained (us­
ing conjugate-gradient optimization) to discriminate between a normal state and 3 
known and commonly occurring fault states (failed tachometer, noisy tachometer, 
and amplifier short circuit - also known as "compensation loss"). The network 
output activations were normalised to sum to 1 in order to provide posterior class 
probability estimates. 

Model (a) used no HMM and assumed that the 4 known states are exhaustive, i.e., 
it just used the feedforward network. Model (b) used a HMM with 5 states, where a 
generative model (a Gaussian mixture model) and a flat prior (with bounds on the 
feature values) were used to determine the probability of the 5th state (as described 
by Equations (1) and (2)). The same neural network as in model (a) was used as a 
discriminator for the other 4 known states. The generative mixture model had 10 
components and used only 2 of the 12 input features, the 2 which were judged to be 
the most sensitive to system change. The parameters of the HMM were designed 
according to the guidelines described earlier. Known fault states were assumed to 
be equally likely with 1 hour MTBF's and with 1 hour mean duration. Unknown 
faults were assumed to have a 20 minute MTBF and a 10 second mean duration. 
Both HMMs used 5-step backwards smoothing, i.e., the probability estimates at 
any time n are based on all past data up to time n and future data up to time 
n + 5 (using a larger number of backward steps was found empirically to produce 
no effect on the estimates). 

Figures 2 (a) and (b) show each model's estimates (as a function of time) that 
the system is in the normal state. The experiment consisted of introducing known 
hardware faults into the system in a controlled manner after 15 minutes and 45 
minutes, each of 15 minutes duration. 

Model (a) 's estimates are quite noisy and contain a significant number of potential 
false alarms (highly undesirable in an operational environment). Model (b) is much 
more stable due to the smoothing effect of the HMM. Nonetheless, we note that 
between the 8th and 10th minutes, there appear to be some possible false alarms: 
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Figure 2: Estimated posterior probability of normal state (a) using no HMM and 
the exhaustive assumption (normal + 3 fault states), (b) using a HMM with a 
hybrid model (normal + 3 faults + other state). 

these data were classified into the unknown state (not shown). On later inspection 
it was found that large transients (of unknown origin) were in fact present in the 
original sensor data and that this was what the model had detected, confirming 
the classification provided by the model. It is worth pointing out that the model 
without a generative component (whether with or without the HMM) also detected 
a non-normal state at the same time, but incorrectly classified this state as one of 
the known fault states (these results are not shown). 

Also not shown are the results from using a generative model alone, with no dis­
criminative component. While its ability to detect unknown states was similar to 
the hybrid model, its ability to discriminate between known states was significantly 
worse than the hybrid model. 

The hybrid model has been empirically tested on a variety of other conditions where 
various "known" faults are omitted from the discriminative training step and then 
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presented to the model during testing: in all cases, the anomalous unknown state 
was detected by the model, i.e., classified as a state which the model had not seen 
before. 

5 APPLICATION ISSUES 

The model described here is currently being integrated into an interactive antenna 
health monitoring software tool for use by operations personnel at all new DSN 
antennas. The first such antenna is currently being built at the Goldstone (Califor­
nia) DSN site and is scheduled for delivery to DSN operations in late 1994. Similar 
antennas, also equipped with fault detectors of the general nature described here, 
will be constructed at the DSN ground station complexes in Spain and Australia in 
the 1995-96 time-frame. 

The ability to detect previously unseen transient behaviour has important practical 
consequences: as well as being used to warn operators of servo problems in real­
time, the model will also be used as a filter to a data logger to record interesting 
and anomalous servo data on a continuous basis. Hence, potentially novel system 
characteristics can be recorded for correlation with other antenna-related events 
(such as maser problems, receiver lock drop during RF feedback tracking, etc.) for 
later analysis to uncover the true cause of the anomaly. A long-term goal is to 
develop an algorithm which can automatically analyse the data which have been 
classified into the unknown state and extract distinct sub-classes which can be 
added as new explicit states to the HMM monitoring system in a dynamic fashion. 
Stolcke and Omohundro (1993) have described an algorithm which dynamically 
creates a state model for HMMs for the case of discrete-valued features. The case 
of continuous-valued features is considerably more subtle and may not be solvable 
unless one makes significant prior assumptions regarding the nature of the data­
generating mechanism. 

6 CONCLUSION 

A simple hybrid classifier was proposed for novelty detection within a probabilis­
tic framework . Although presented in the context of hidden Markov models for 
fault detection, the proposed scheme is perfectly general for generic classification 
applications. For example, it would seem highly desirable that fielded automated 
medical diagnosis systems (such as various neural network models which have been 
proposed in the literature) should always contain a "novelty-detection" component 
in order that novel data are identified and appropriately classified by the system. 

The primary weakness of the methodology proposed in this paper is the necessity 
for prior knowledge in the form of densities for the feature values given the unknown 
state. The alternative approach is not to explicitly model the the data from the 
unknown state but to use some form of thresholding on the input densities from the 
known states (Aitchison, Habbema, and Kay, 1977; Dubuisson and Masson, 1993). 
However, direct specification of threshold levels is itself problematic. In this sense, 
the specification of prior densities can be viewed as a method for automatically 
determining the appropriate thresholds (via Equation (2)). 
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As a final general comment, it is worth noting that online learning systems must 
use some form of novelty detection. Hence, hybrid generative-discriminative models 
(a simple form of which has been proposed here) may be a useful framework for 
modelling online learning. 
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