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Abstract 
We will present the implementation of intelligent electronic circuits 
realized for the first time using a new functional device called Neuron 
MOS Transistor (neuMOS or vMOS in short) simulating the behavior 
of biological neurons at a single transistor level. Search for the most 
resembling data in the memory cell array, for instance, can be 
automatically carried out on hardware without any software 
manipulation. Soft Hardware, which we named, can arbitrarily change 
its logic function in real time by external control signals without any 
hardware modification. Implementation of a neural network equipped 
with an on-chip self-learning capability is also described. Through the 
studies of vMOS intelligent circuit implementation, we noticed an 
interesting similarity in the architectures of vMOS logic circuitry and 
biological systems. 

1 INTRODUCTION 
The motivation of this work has stemmed from the invention of a new functional 
transistor which simulates the behavior of biological neurons (Shibata and Ohmi, 1991; 
1992a). The transistor can perfOlID weighted summation of multiple input signals and 
squashing on the sum all at a single transistor level. Due to its functional similarity, the 
transistor was named Neuron MOSFET (abbreviated as neuMOS or vMOS). What is of 
significance with this new device is that a number of new architecture electronic circuits 
can be build using vMOS' which are different from conventional ones both in operational 
principles and functional capabilities. They are charactetized by a high degree of 
parallelism in hardware computation, a large flexibility in hardware configuration and a 
dramatic reduction in the circuit complexity as compared to conventional integrated 
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circuits. During the course of studies in exploring vMOS circuit applications an interesting 
similarity has been noticed between the basic vMOS logic circuit architecture and the 
common structure found in biological neuronal systems, i. e., the competitive processes 
of excitatory and inhibitory connections. The purpose of this article is to demonstrate how 
powerful the neuron-like functionality in an elemental device is in implementing 
intelligent functions in silicon integrated circuits. 

2 NEURON MOSFET AND SOFT-HARDWARE LOGIC CIRCUITS 
The symbolic representation of a vMOS is given in Fig. 1. A vMOS is a regular MOS 
transistor except that its gate electrode is made electrically floating and multiple input 
terminals are capacitively coupled to the floating gate. The potential of the floating gate 
~ is determined as a linear weighted sum of multiple input voltages where each 
weighting factor is given by the magnitude of a coupling capacitance. When <l>F' the 
weighted sum, exceeds the threshold voltage of the transistor, it turns on. Thus the 
function of a neuron model (McCulloch and Pitts, 1943) has been directly implemented 
in a simple transistor structure. vMOS transistors were fabricated using the double­
polysilicon gate technology and a CMOS process was employed for vMOS integrated 
circuits fabrication. It should be noted here that no floating-gate charging effect was 
employed in the operation of vMOS logic circuits. 
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Figure 1: Schematic of a neuron MOS transistor. 

Since the weighting factors in a vMOS are detennilled by the overlapping areas of the 
first poly (floating gate) and second poly (input gate) patterns, they are not alterable. For 
this reason, in vMOS applications to self-learning neural network synthesis, a synapse 
cell circuit was provided to each input temlinal of a vMOS to represent an alterable 
connection strength. Here the plasticity of a synaptic weight was created by 
charging/discharging of the floating-gate in a vMOS synapse circuitry as described in 4. 

TheI-Vcharacteristics ofa two-input-gate vMOS having identical coupling capacitances 
are shown in Fig. 2, where one of the input gates is used as a gate terminal and the other 
as a threshold-control terminal. The apparent threshold voltage as seen from the gate 
terminal is changed from a depletion-mode to an enhancement-mode threshold by the 
voltage given to the control terminal. This variable threshold nature of a vMOS, we 
believe, is most essential in creating flexibility in electronic hardware systems. 

Figure 3(a) shows a two-input-variable Soft Hardu:are Logic (SHL) circuit which can 
represent all possible sh.1een Boolean functions for two binary inputs Xl and X2 by 
adjusting the control signals VA' VB and Ve. The inputs, Xl and X2, are directly coupled 
to the floating gate of a complementary vMOS inverter in the output stage with a 1:2 
coupling ratio. The vMOS inve11er, which we call the main inve11er, deternlines the logic. 
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Figure 2: Measured char­
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Figure 3: Two-input-variable soft hardware logic circuit(a) and measured 
characteristics(b). The slow operation is due to the loading effect. (The test circuit has no 
output buffers.) 

The inputs are also coupled to the main inve11er via three inter-stage vMOS inverters 
(pre-inverters). When the analog variable represented by the binary inputs Xl and X2 

increases~ the inputs tend to turn on the main inverter via direct connection~ while the 
indirect connection via pre-inverters tend to turn off the main invelter because pre­
inverter outputs change from V DO to 0 when they turn on. This competitive process creates 
logics. The turn-on thresholds of pre-inverters are made alterable by control signals 
utilizing the variable threshold characteristics of vMOS'. Thus the real-time alteration of 
logic functions has been achieved and are demonstrated by experiments in Fig. 3(b). With 
the basic circuit architecture of the two-staged vMOS inverter configuration shown in Fig. 
3(a)~ any Boolean function can be generated. We found the inverting connections via pre­
inverters are most essential in logic synthesis. The structure indicates an interesting 
similarity to neuronal functional modules in which intramodular inhibitory connections 
play essential roles. 

Fixed function logics can be generated much more simply using the basic two-staged 
structure~ resulting in a dramatic reduction in transistor counts and interconnections. It has 
been demonstrated that a full adder~ 3-b and 4-b NO conve11ers can be constructed only 
with 8~ 16 and 28 transistors~ respectively, which should be compared to 30~ 174 and 398 
transistors by conventional CMOS design, respectively. The details on vMOS circuit 
design are desClibed in Refs. (Shibata and Ohmi, 1993a; 1993b) and experimental 
verification in Ref. (Kotani et al.~ 1992). 
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Figure 4: Real-time rule-variable data matching circuit (a) and measured wave forms 
(b & c). In (c), l) is changed as 0.5, 1, 1.5, and 2 [V] from top to bottom. 

A unique vMOS circuit based on the basic structure of Fig. 3(a) is the real-time rule­
variable data matching circuitry shown in Fig. 4(a). The circuit output becomes high when 
I X - y I < l). X is the input data, Y the template data and l) the window width for data 
matching where X, Y and l) are all time variables. Measured data are shown in Figs. 4(b) 
and 4(c), where it is seen the triple peaks are merged into a single peak as l) increases 
(Shibata et al., 1993c). The circuit is composed of only 10 vMOS' and can be easily 
integrated with each pixel on a image sensor chip. If vMOS circuitry is combined with 
a bipolar image sensor cell having an amplification function (fanaka et al., 1989), for 
instance, in situ image processing such as edge detection and variable-template matching 
would become possible, leading to an intelligent image sensor chip. 

3 BINARY-MULTIVALUED-ANALOG MERGED HARDWARE 
COMPUTATION 
A winner-take-all circuit (WTA) implemented by vMOS circuitry is given in Fig. 5. 
Each cell is composed of a vMOS variable threshold inverter in which the apparent 
threshold is modified by an analog input signals VA - V c' When the common input signal 
VR is ramped up, the lowest threshold cell (a cell receiving the largest analog input) turns 
on firstly, at which instance a feedback loop is formed in each cell and the state of the 
cell is self-latched. As a result, only the winner cell yields an output of 1. The circuit has 
been applied to building an associative memory as demonstrated in Fig. 6. The binary data 
stored in a SRAM cell array are all simultaneously matched to the sample data by taking 
XNOR, and the number of matched bits are transfeITed to the floating gate of each WfA 
cell by capacitance coupling. The WI' A action finds the location of data having the largest 
number of matched bits. This principle has been also applied to an sorting circuitry 
(Yamashita et aI., 1993). In these circuits all computations are conducted by an algOlithm 
directly imbedded in the hardware. Such an analog-digital merged hardware computation 
algorithm is a key to implement intelligent data processing architecture on silicon. A 
multivalued DRAM cell equipped with the association function and a multivalued SRAM 
cell having self-quantizing and self-classification functions have been also developed 
based on the binary-multivalued-analog merged hardware algorithm (Rita et aI., 1994). 
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Figure 5: Operational principle of vMOS Winner-Take-All circuit. 
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Figure 6: vMOS associative memory: (a) circuit diagram; (b) photomicrograph of a test 
chip. 

4 HARDWARE SELF-LEARNING NEURAL NETWORKS 
Since vMOS itself has the basic function of a neuron, a neuron cell is very easily 
implemented by a complementary vMOS inve11er. The learning capability of a neural 
network is due to the plasticity of synaptic connections. Therefore its circuit 
implementation is a key issue. A stand-by power dissipation free synapse circuit which 
has been developed using vMOS circuitry is shown in Fig. 7(a). The circuit is a 
differential pair of N-channel and P-channel vMOS source followers sharing the same 
floating gate, which are both merged into CMOS inverters to cut off dc cunent paths. 
When the pre-synaptic neuron fires, both source followers are activated. Then the analog 
weight value stored as charges in the common floating gate is read out and transferred to 
the floating gate (dendrite) of the post-synaptic neuron by capacitance coupling as shown 
in Figs. 7 (b) and (c). The outputs of N-vMOS (V+) and P-vMOS (V-) source followers 
are averaged at the dendrite level, yielding an effective synapse output equal to (V+ + 
V-)/2. The synapse can represent both positive (excitatory) and negative (inhibitory) 
weights depending on whether the effective output is larger or smaller than Vnrj2, 
respectively. The operation of the synapse cell is demonstrated in Fig. 8(a). 
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Figure 7: Synapse cell circuit implemented by vMOS circuitry. 
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Figure 8: (a) Measured synapse cell output characteristics; (b) weight updating 
characteristics as represented by N-vMOS threshold with (our new cell:bottom) or 
without (conventional EEPROM cell: top) feed back. 

The weight updating is conducted by giving high programming pulses to both V x and V y 

tenninals. (Their coupling capacitances are made much larger than others). Then the 
common floating gate is pulled up to the programming voltage~ allowing electrons to flow 
into the floating gate via Fowler-Nordheim tunneling. When either Vx or Vy is low, 
tunneling injection does not occur because the tunneling current is very sensitive to the 
electric field intensity, being exponentially dependent upon the tunnel oxide field (Hieda 
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et al.~ 1985). The data updating occurs only at the crossing point of Vx and Vy lines~ 
allowing Hebb-rule-like learning directly implemented on the hardware (Shibata and 
Ohmi~ 1992b). Hardware-Backpropagation (HEP) learning algorithm~ which is a 
simplified version of the original BP ~ has been also developed in order to facilitate its 
hardware implementation (Ishii et al.~ 1992) and has been applied to build self-learning 
vMOS neural networks (Ishii et al.~ 1993). 

One of the drawbacks of programming by tunneling is the non-linearity in the data 
updating characteristics under constant pulses as shown in Fig. 8(b) (top). This difficulty 
has been beautifully resolved in our cell. With Vs high~ the output of the N-vMOS source 
follower is fed back to the tunneling electrode and the floating-gate potential is set to the 
tunneling electrode. In this manner~ the voltage across the tunneling oxide is always preset 
to a constant voltage (equal to the N-vMOS threshold) before a programming pulse is 
applied~ thus allowing constant charge to be injected or extracted at each pulse (Kosaka 
et al~ 1993) as demonstrated in Fig. 8(b) (bottom). A test self-learning circuit that leamed 
XOR is shown in Fig. 9. 

INPUT1 "XOR" 
INPUT2 

! I I 
INPUT1 \l JI-; ---"~ 

[ ; 
INPUT2 ! 

400nsecldiv 

Figure 9: Test circuit of vMOS neural network and its response when XOR is learnt. 

5 SUMMARY 
Development of intelligent electronic circuit systems using a new functional device called 
Neuron MOS Transistor has been described. vMOS circuitry is charactedzed by its high 
parallelism in computation scheme and the large flexibility in altering hardware functions 
and also by its great simplicity in the circuit organization. The ideas of Soft Hardware and 
the vMOS associative memory were not directly inspired from biological systems. 
However~ an interesting similarity is found in their basic structures. It is also demonstrated 
that the vMOS circuitry is very powerful in building neural networks in which learning 
algorithms are imbedded in the hardware. We conclude that the neuron-like functionality 
at an elementary device level is essentially imp0l1ant in implementing sophisticated 
information processing algorithms directly in the hardware. 
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