
Analysis of Short Term Memories for Neural 
Networks 

Jose C. Principe, Hui-H. Hsu and Jyh-Ming Kuo 

Computational NeuroEngineering Laboratory 
Department of Electrical Engineering 

University of Florida, CSE 447 
Gainesville, FL 32611 

principe@synapse.ee.ufi.edu 

Abstract 

Short term memory is indispensable for the processing of time 
varying information with artificial neural networks. In this paper a 
model for linear memories is presented, and ways to include 
memories in connectionist topologies are discussed. A comparison 
is drawn among different memory types, with indication of what is 
the salient characteristic of each memory model. 

1 INTRODUCTION 

An adaptive system that has to interact with the external world is faced with the 
problem of coping with the time varying nature of real world signals. Time varying 
signals, natural or man made, carry information in their time structure. The problem 
is then one of devising methods and topologies (in the case of interest here, neural 
topologies) that explore information along time.This problem can be appropriately 
called temporal pattern recognition, as opposed to the more traditional case of static 
pattern recognition. In static pattern recognition an input is represented by a point in 
a space with dimensionality given by the number of signal features, while in temporal 
pattern recognition the inputs are sequence of features. These sequence of features 
can also be thought as a point but in a vector space of increasing dimensionality. 
Fortunately the recent history of the input signal is the one that bears more 
information to the decision making, so the effective dimensionality is finite but very 
large and unspecified a priori. How to find the appropriate window of input data 
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(memory depth) for a given application is a difficult problem. Likewise, how to 
combine the information in this time window to better meet the processing goal is 
also nontrivial. Since we are interested in adaptive systems, the goal is to let the 
system find these quantities adaptively using the output error information. 

These abstract ideas can be framed more quantitatively in a geometric setting (vector 
space). Assume that the input is a vector [u(l), ... u(n), .... ] of growing size. The 
adaptive processor (a neural network in our case) has a fixed size to represent this 
information, which we assign to its state vector [x1(n), .... xN(n)] of size N. The 
usefulness of xk(n) depends on how well it spans the growing input space (defined by 
the vector u(n», and how well it spans the decision space which is normally 
associated with the minimization of the mean square error (Figure 1). Therefore, in 
principle, the procedure can be divided into a representational and a mapping 
problem. 

The most general solution to this problem is to consider a nonlinear projection 
manifold which can be modified to meet both requirements. In terms of neural 
topologies, this translates to a full recurrent system, where the weights are adapted 
such that the error criterion is minimized. Experience has shown that this is a rather 
difficult proposition. Instead, neural network researchers have worked with a wealth 
of methods that in some way constrain the neural topology. 

Projection space 

Nonlinear mapping 

error 

~ 
Optimal 

Decision space 

Figure 1. Projection ofu(n) and the error for the task. (for simplicity we 
are representing only linear manifolds) 

The solution that we have been studying is also constrained. We consider a linear 
manifold as the projection space, which we call the memory space. The projection of 
u(n) in this space is subsequently mapped by means of a feedforward neural network 
(multilayer perceptron) to a vector in decision space that minimizes the error 
criterion. This model gives rise to the focused topologies. The advantage of this 
constrained model is that it allows an analytical study of the memory structures, since 
they become linear filters. It is important to stress that the choice of the projection 
space is crucial for the ultimate performance of the system, because if the projected 
version of u(n) in the memory space discards valuable information about u(n), then 
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the nonlinear mapping will always produce sub-optimal results. 

2 Projection in the memory space 

If the projection space is linear, then the representational problem can be studied with 
linear system concepts. The projected vector u(n) becomes Yn 

N 

Yn = L w0n-k (1) 
k=l 

where xn are the memory traces. Notice that in this equation the coefficients wk are 
independent of time, and their number fixed to N. What is the most general linear 
structure that implements this projection operation? It is the generalizedfeedfonvard 
structure [Principe et aI, 1992] (Figure 2), which in connectionist circles has been 
called the time lagged recursive network [Back and Tsoi, 1992]. One can show that 
the defining relation for generalized feedforward structures is 

gk (n) = g (n) • gk-l (n) k';? 1 

where • represents the convolution operation, and go (n) = (5 (n) . This relation 
means that the next state vector is constructed from the previous state vector by 
convolution with the same function g(n), yet unspecified. Different choices of g(n) 
will provide different choices for the projection space axes. When we apply the input 
u(n) to this structure, the axes of the projection space become xk(n), the convolution 
of u(n) with the tap signals. The projection is obtained by linearly weighting the tap 
signals according to equation (1). 

Figure 2. The generalizedfeedfonvard structure 

We define a memory structure as a linear system whose generating kernel g(n) is 
causal g (n) = 0 fo r n < 0 and normalized, i.e. 

00 

L Ig(n)1 = 1 
n=O 

We define memory depth D as the modified center of mass (first moment in time) of 
the last memory tap. 

00 

D = L ngk(n) 
n=O 

And we define the memory resolution R as the number of taps by unit time, which 
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becomes liD. The purpose of the memory structure is to transform the search for an 
unconstrained number of coefficients (as necessary if we worked directly with u(n» 
into one of seeking a fixed number of coefficients in a space with time varying axis. 

3 Review of connectionist memory structures 

The gamma memory [deVries and Principe, 1992] contains as special cases the 
context unit [Jordan, 1986] and the tap delay line as used in TDNN [Waibel et aI, 
1989]. However, the gamma memory is also a special case of the generalized 

feedforward filters where g (n) = Jl (1 - Jl) n which leads to the gamma functions as 
the tap signals. Figure 3, adapted from [deVries and Principe, 1993], shows the most 
common connectionist memory structures and its characteristics. 

As can be seen when k=l, the gamma memory defaults to the context unit, and when 
Jl=1 the gamma memory becomes the tap delay line. In vector spaces the context unit 
represents a line, and by changing 11 we are finding the best projection of u(n) on this 
line. This representation is appropriate when one wants long memories but low 
resolution. 

Likewise, in the tap delay line, we are projecting u(n) in a memory space that is 
uniquely determined by the input signal, i.e. once the input signal u(n) is set, the axes 
become u(n-k) and the only degree of freedom is the memory order K. This memory 
structure has the highest resolution but lacks versatility, since one can only improve 
the input signal representation by increasing the order of the memory. In this respect, 
the simple context unit is better (or any memory with a recursive parameter), since 
the neural system can adapt the parameter 11 to project the input signal for better 
performance. 

We recently proved that the gamma memory structure in continuous time represents 
a memory space that is rigid [Principe et aI, 1994] . When minimizing the output mean 
square error, the distance between the input signal and the projection space 
decreases. The recursive parameter in the feedforward structures changes the span of 
the memory space with respect to the input signal u(n) (which can be visualized as 
some type of complex rotation). In terms of time domain analysis, the recursive 
parameter is finding the length of the time window (the memory depth) containing 
the relevant information to decrease the output mean square error. The recursive 
parameter Jl can be adapted by gradient descent learning [deVries and Principe, 
1992], but the adaptation becomes nonlinear and multiple minima exists.Notice that 
the memory structure is stable for O<Jl<2. 

The gamma memory when utilized as a linear adaptive filter extends Widrow's 
ADALINE [de Vries et aI, 1992], and results in a more parsimonious filter for echo 
cancellation [Palkar and Principe, 1994]. Preliminary results with the gamma 
memory in speech also showed that the performance of word spotters improve when 
11 is different from one (i.e. when it is not the tap delay line). In a signal such as 
speech where time warping is a problem, there is no need to use the full resolution 
provided by the tap delay line. It is more important to trade depth by resolution. 
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4 Other Memory Structures 

There are other memory structures that fit our definition. Back and Tsoi proposed a 
lattice structure that fits our definition of generalized feedforward structure. 
Essentially this system orthogonalizes the input, uncorrelating the axis of the vector 
space (or the signals at the taps of the memory). This method is known to provide the 
best speed of adaptation because gradient descent becomes Newton's method (after 
the lattice parameters converge). The problem is that it becomes more computational 
demanding (more parameters to adapt, and more calculations to perform). 

Tape delay line 

u(tJ 

-0 

Delay operator: Z-l memory depth: K Memory resolution: 1. 

Context Unit 
z nnmnin 

yet) $ 1-
1--1--+--. 

Memory depth: 1/J,l Memory resolution: J,l Delay operator: 
z-(1-J,l) 

Gamma memory 

G(z) 

Delay operator: 
z - (1- J,l) Memory depth: klJ,l Memory resolution: J,l 

Figure 3. Connectionist memory structures 

Laguerre memories 

A set of basis intimately related to the gamma functions is the Laguerre bases. The 
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Laguerre bases is an orthogonal span of the gamma space [Silva, 1994], which means 
that the information provided by both memories is the same. The advantage of the 
Laguerre is that the signals at the taps (the basis) are less correlated and so the 
adaptation speed becomes faster for values of Jl close to 0 or 2 [Silva, 1994] (the 
condition number of the matrix created by the tap signals is bounded). Notice that the 
Laguerre memory is still very easy to compute (a lowpass filter followed by a cascade 
of first order all pass filters). 

aguerre memory 

Delay operator: 
z - (1 - Jl) 

Gamma II memories. 

-1 
Z - (1 - Jl) 

z - (1- Jl) 

z domain 

The Gamma memory has a multiple pole that can be adaptively moved along the real 
Z domain axis, i.e. the Gamma memory can only implement lowpass (0< Jl <1) or 
highpass (1 <Jl <2) transfer functions. We experimentally observed that in nonlinear 
prediction of chaotic time series the recursive parameter sometimes adapts to values 
less than one. The highpass creates an extra ability to match the prediction by 
alternating the signs of the samples in the gamma memory (the impulse response for 
1< Jl <2 is alternating in sign). But with a single real parameter the adaptation is 
unable to move the poles to complex values. Two conditions come to mind that 
require a memory structure with complex poles. First, the information relevant for 
the signal processing task appears in periodic bursts, and second, the input signal is 
corrupted by periodic noise. A memory structure with adaptive complex poles can 
successfully cope with these two conditions by selecting in time the intervals where 
the information is concentrated (or the windows that do not provide any information 
for the task). Figure 3 shows one possible implementation for the Gamma II kernel. 
Notice that for stability, the parameter u must obey the condition Jl (1 +~) < 2 and 
o <Jl <2. Complex poles are obtained for u> O. These parameters can be adapted by 
gradient descent [Silva et aI, 1992]. In terms of versatility, the Gamma II has a pair 
of free complex poles, the Gamma I has a pole restricted to the real line in the Z 
domain, and the tap delay line has the pole set at the origin of the Z domain (z=O). A 
multilayer perceptron equipped with an input memory layer with the Gamma II 
memory structure implements a nonlinear mapping on an ARMA model of the input 
signal. 

5 How to use Memory structures in Connectionist networks. 

Although we have presented this theory with the focused architectures (which 
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corresponds to a nonlinear moving average model (NMAX», the memory structures 
can be placed anywhere in the neural topology. Any nonlinear processing element can 
feed one of these memory kernels as an extension of [Wan, 1990]. If the memory 
structures are used to store traces of the output of the net, we obtain a nonlinear 
autoregressive model (NARX). If they are used both at the input and output, they 
represent a nonlinear ARMAX model shown very powerful for system identification 
tasks. When the memory layer is placed in the hidden layers, there is no 
corresponding linear model. 

Gamma II 

Delay operator: _Jl_[z_-_< l_-_Jl)_]_ 
[z - (l - Jl)] 2 + ~Jl2 

One must realize that these types of memory structures are recursive (except the tap 
delay line), so their training will involve gradients that depend on time. In the focused 
topologies the network weights can still be trained with static backpropagation, but 
the recursive parameter must be trained with real time recurrent learning (RTRL) or 
backpropagation through time (BPTT). When memory structures are scattered 
through out the topology, training can be easily accomplished with backpropagation 
through time, provided a systematic way is utilized to decompose the global 
dynamics in local dynamics as suggested in [Lefebvre and Principe, 1993]. 

6 Conclusions 

The goal of this paper is to present a set of memory structures and show their 
relationship. The newly introduced Gamma II is the most general of the memories 
reviewed. By adaptively changing the two parameters u,Jl the memory can create 
complex poles at any location in the unit circle. This is probably the most general 
memory mechanism that needs to be considered. With it one can model poles and 
zeros of the system that created the signal (if it accepts the linear model). 

In this paper we addressed the general problem of extracting patterns in time. We 
have been studying this problem by pre-wiring the additive neural model, and 
decomposing it in a linear part -the memory space- that is dedicated to the storage of 
past values of the input (output or internal states), and in a nonlinear part which is 
static. The memory space accepts local recursion, which creates a powerful 
representational structure and where stability can be easily enforced (test in a single 
parameter). Recursive memories have the tremendous advantage of being able to 
trade memory depth by resolution. In vector spaces this means changing the relative 
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position between the projection space and the input signal. However, the problem of 
finding the best resolution is still open (this means adaptively finding k, the memory 
order). Likewise ways to adaptively find the optimal value of the memory depth need 
improvements since the gradient procedures used up to now may be trapped in local 
minima. It is still necessary to modify the definition of memory depth such that it 
applies to both of these new memory structures. The method is to define it as the 
center of mass of the envelope of the last kernel. 
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