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We present a method for learning, tracking, and recognizing human hand 
gestures recorded by a conventional CCD camera without any special 
gloves or other sensors. A view-based representation is used to model 
aspects of the hand relevant to the trained gestures, and is found using an 
unsupervised clustering technique. We use normalized correlation net­
works, with dynamic time warping in the temporal domain, as a distance 
function for unsupervised clustering. Views are computed separably for 
space and time dimensions; the distributed response of the combination 
of these units characterizes the input data with a low dimensional repre­
sentation. A supervised classification stage uses labeled outputs of the 
spatio-temporal units as training data. Our system can correctly classify 
gestures in real time with a low-cost image processing accelerator. 

1 INTRODUCTION 

Gesture recognition is an important aspect of human interaction, either interpersonally or 
in the context of man-machine interfaces. In general, there are many facets to the "gesture 
recognition" problem. Gestures can be made by hands, faces, or one's entire body; they 
can be static or dynamic, person-specific or cross-cultural. Here we focus on a subset of 
the general task, and develop a method for interpreting dynamic hand gestures generated 
by a specific user. We pose the problem as one of spotting instances of a set of known 
(previously trained) gestures. In this context, a gesture can be thought of as a set of hand 
views observed over time, or simply as a sequence of images of hands over time. These 
images may occur at different temporal rates, and the hand may have different spatial 
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offset or gross illumination condition. We would like to achieve real- or near real-time 
performance with our system, so that it can be used interactively by users. 

To achieve this level of performance, we take advantage of the principle of using only 
as much "representation" as needed to perform the task. Hands are complex, 3D articu­
lated structures, whose kinematics and dynamics are difficult to fully model. Instead of 
performing explicit model-based reconstruction, and attempting to extract these 3D model 
parameters (for example see [4, 5, 6]), we use a simpler approach which uses a set of 2D 
views to represent the object. Using this approach we can perform recognition on objects 
which are either too difficult to model or for which a model recovery method is not feasible. 
As we shall see below, the view-based approach affords several advantages, such as the 
ability to form a sparse representation that only models the poses of the hands that are 
relevant to the desired recognition tasks, and the ability to learn the relevant model directly 
from the data using unsupervised clustering. 

2 VIEW-BASED REPRESENTATION 

Our task is to recognize spatio-temporal sequences of hand images. To reduce the dimen­
sionality of the matching involved, we find a set of view images and a matching function 
such that the set of match scores of a new image with the view images is adequate for recog­
nition. The matching function we use is the normalized correlation between the image and 
the set of learned spatial views. 

Each view represents a different pose of the object being tracked or recognized. We 
construct a set of views that "spans" the set of images seen in the training sequences, in 
the sense that at least one view matches every frame in the sequence (given a distance 
metric and threshold value). We can then use the view with the maximum score (minimum 
distance) to localize the position of the object during gesture performance, and use the 
ensemble response of the view units (at the location of maximal response) to characterize 
the actual pose of the object. Each model is based on one or more example images of a 
view of an object, from which mean and variance statistics about each pixel in the view are 
computed. 

The general idea of view-based representation has been advocated by Ullman [12] and 
Poggio [9] for representing 3-D objects by interpolating between a small set of 2-D views. 
Recognition using views was analyzed by Breuel, who established bounds on the number 
of views needed for a given error rate [3]. However the view-based models used in these 
approaches rely on a feature-based representation of an image, in which a "view" is the 
list of vertex locations of semantically relevant features. The automatic extraction of these 
features is not a fully solved problem. (See [2] for a nearly automated system of finding 
corresponding points and extracting views.) 

Most similar to our work is that of Murase and Nayar[8] and Turk[11] which use low­
order eigenvectors to reduce the dimensionality of the signal and perform recognition. Our 
work differs from theirs in that we use normalized-correlation model images instead of 
eigenfunctions and can thus localize the hand position more directly, and we extend into 
the temporal domain, recognizing image sequences of gestures rather than static poses. 

A particular view model will have a range of parameter values of a given transformation 
(e.g., rotation, scale, articulation) for which the correlation score shows a roughly convex 
"tuning curve". If we have a set of view models which sample the transformation parameter 
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Figure 1: (a) Three views of an eyeball: +30, O. and -30 of gaze angle. (a) Normalized 
correlation scores of the +30 degree view model when tracking a eyeball rotating from 
approximately -30 to +30 degrees of gaze angle. (b) Score for 0 degree view model. (c) 
Score for - 30 degree model. 

finely enough, it is possible to infer the actual transform parameters for new views by 
examining the set of model correlation scores. For example, Figure la shows three views 
of an eyeball that could be used for gaze tracking; one looking 30 degrees left, one looking 
center-on, and one looking 30 degrees to the right. The three views span a ±30 degree 
subspace of the gaze direction parameter. Figure I (b,c,d) shows the normalized correlation 
score for each view model when tracking a rotating eyeball. Since the tuning curves 
produced by these models are fairly broad with respect to gaze angle, one could interpolate 
from their responses to obtain a good estimate of the true angle. 

When objects are non-rigid, either constructed out of flexible materials or an articulated 
collection of rigid parts (like a hand), then the dimensionality of the space of possible 
views becomes much larger. Full coverage of the view space in these cases is usually 
not possible since enumerating it even with very coarse sampling would be prohibitively 
expensive in terms of storage and search computation required. However, many parts of a 
high dimensional view space may never be encountered when processing real sequences, 
due to unforeseen additional constraints. These may be physical (some joints may not 
be completely independent), or behavioral (some views may never be used in the actual 
communication between user and machine). A major advantage of our adaptive scheme is 
that it has no difficulty with sparse view spaces, and derives from the data which regions of 
the space are full. 
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Figure 2: (a) Models automatically acquired from a sequence of images of a rotating box. 
(b) Normalized correlation scores for each model as a function of image sequence frame 
number. 

3 UNSUPERVISED LEARNING OF VIEW UNITS 

To derive a set of new view models, we use a simple form of unsupervised clustering 
in which the first example forms a new view, and subsequent examples that are below a 
distance threshold are merged into the nearest existing view. A new view is created when 
an example is below the threshold distance for all views in the current set, but is above a 
base threshold which establishes that the object is still (roughly) being tracked. Over time, 
this "follow-the-Ieader" algorithm results in a family of view models that sample the space 
of object poses in the training data. This method is similar to those commonly used in 
vector quantization [7]. Variance statistics are updated for each model pixel, and can be 
used to exclude unreliable points from the correlation computation. 

For simple objects and transformations, this adaptive scheme can build a model which 
adequately covers the entire space of possible views. For example, for a convex rigid body 
undergoing aID rotation with fixed relative illumination, a relatively small number of view 
models can suffice to track and interpolate the position of the object at any rotation. Figures 
2 illustrates this with a simple example of a rotating box. The adaptive tracking scheme 
was run with a camera viewing a box rotating about a fixed axis. Figure 2a shows the view 
models in use when the algorithm converged, and all possible rotations were matched with 
score greater than 0\. To demonstrate the tuning properties of each model under rotation, 
Figure 2b shows the correlation scores for each model plotted as a function of input frame 
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Figure 3: Four spatial views found by unsupervised clustering method on sequence con­
taining two hand-waving gestures: side-to-side and up-down. 
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Figure4: Overview of unsupervised clustering stage to learn spatial and temporal views. An 
input image sequence is reduced to sequence of feature vectors which record the maximum 
value in a normalized correlation network corresponding to each spatial view. A similar 
process using temporal views reduces the spatial feature vectors to a single spatia-temporal 
feature vector. 

number of a demonstration sequence. In this sequence the box was held fixed at its initial 
position for the first 5 frames, and then rotated continuously from 0 to 340 degrees. The 
responses of each model are broadly tuned as a function of object angle, with a small 
number of models sufficing to represent/interpolate the object at all rotations (at least about 
a single axis). 

We ran our spatial clustering method on images of hands performing two different "waving" 
gestures. One gesture was a side-to-side wave, with the fingers rigid, and the other was 
an up-down wave, with the wrist held fixed and the fingers bending towards the camera 
in synchrony. Running instances of both through our view learning method, with a base 
threshold of Bo=0.6 and a "new model" threshold of BI = 0.7, the clustering method found 
4 four spatial templates to span all of the images in the both sequences Figure 3 shows the 
pixel values for these four models. 
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Figure 5: Surface plot of temporal templates found by unsupervised clustering method on 
sequences of two hand-waving gestures. Vertical axis is score, horizontal axis is time, and 
depth axis is spatial view index. 

3.1 TEMPORAL VIEWS 

The previous sections provide a method for finding spatial views to reduce the dimen­
sionality in a tracking task. The same method can be applied in the temporal domain as 
well, using a set of "temporal views". Figure 4 shows an overview of these two stages. 
We construct temporal views using a similar method to that used for spatial views, but 
with temporal segmentation cues provided by the user. Sequences of spatial-feature vector 
outputs (the normalized correlation scores of the spatial views) are passed as input to the 
unsupervised clustering method, yielding a set of temporal views. To find the distance 
between two sequences, we again use a normalized correlation metric, with Dynamic Time 
Warping (DlW) method [1, 10]. This allows the time course of a gesture to vary, as long 
as the same series of spatial poses is present. 

In this way a set of temporal views acting on spatial views which in turn act on image 
intensities, is created. The responses of these composi te views yield a single spatio-temporal 
stimulus vector which describes spatial and temporal properties of the input signal. As an 
example, for the "hand-waving" example shown above, two temporal views were found by 
the clustering method. These are shown as surface plots in Figure 5. Empirically we have 
found that the spatio-temporal units capture the salient aspects of the spatial and temporal 
variation of the hand gestures in a low-dimensional representation, so efficient classification 
is possible. The response of these temporal view units on an input sequence containing 
three instances of each gesture is shown in Figure 6. 

4 CLASSIFICATION OF GESTURES 

The spatio-temporal units obtained by the unsupervised procedure described above are used 
as inputs to a supervised learning/classification stage (Figure 7(a)). We have implemented 
two different classification strategies, a traditional Diagonal Gaussian Classifier, and a 
multi-layer perceptron. 
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Figure 6: (a) surface plot of spatial view responses on input sequence containing three 
instances of each hand-waving gesture. (b) final spatio-temporal view unit response: the 
time-warped, normalized correlation score of temporal views on spatial view feature vectors. 

As an experiment, we collected 42 examples of a "hello" gesture, 26 examples of "good­
bye" and 10 examples of other gestures intended to generate false alarms in the classifier. 
All gestures were performed by a single user under similar imaging conditions. For each 
trial we randomly selected half of the target gestures to train the classifier, and tested on the 
remaining half. (All of the conflictor gestures were used in both training and testing sets 
since they were few in number.) 

Figure 7(b) summarizes the results for the different classification strategies. The Gaussian 
classifier (DG) achieved an hit rate of 67%, with zero false alarms. The multi-layer 
perceptron (MLP) was more powerful but less conservative, with a hit rate of 86% and a 
false alarm rate of 5%. We found the results of the MLP classifier to be quite variable; 
on many of the trials the classifier was stuck in a local minima and failed to converge on 
the test set. Additionally there was considerable dependence on the number of units in 
the hidden layer; empirically we found 12 gave best performance. Nonetheless, the MLP 
classifier provided good performance. When we excluded the trials on which the classifier 
failed to converge on the training set, the performance increased to 91 % hit rate, 2% false 
alarm rate. 

5 CONCLUSION 

We have demonstrated a system for tracking and recognition of simple hand gestures. Our 
entire recognition system, including time-warping and classification, runs in real time (over 
10Hz). This is made possible through the use of a special purpose normalized correlation 
search co-processor. Since the dimensionality of the feature space is low, the dynamic time 
warping and classifications steps can be implemented on conventional workstations and 
still achieve real-time performance. Because of this real-time performance, our system is 
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Figure 7: Overview of supervised classification stage and results obtained for different 
types of classifiers. 

directly applicable to interactive "glove-free" gestural user interfaces. 

References 

[1] Bellman, R E., (1957) Dynamic Programming. Princeton, NJ: Princeton Univ. Press. 

[2] Beymer, D., Shashua, A., and Poggio, T., (1993) ''Example Based Image Analysis 
and Synthesis", MIT AI Lab Memo No. 1431 

[3] Breuel, T., (1992) "View-based Recognition", IAPR Workshop on Machine Vision 
Applications. 

[4] Cipolla, R, Okamotot, Y., and Kuno, Y., (1992) "Qualitative visual interpretation 
of 3D hand gestures using motion parallax", IAPR Workshop on Machine Vision 
Applications. 

[5] Fukumoto, M., Mase, K., and Suenaga, Y., (1992) "Real-Time Detection of Pointing 
Actions for a Glove-Free Interface", IAPR Workshop on Machine Vision Applications. 

[6] Ishibuchi, K., Takemura, H., and Kishino, F., "Real-Time Hand Shape Recognition 
using Pipe-line Image Processor", (1992) IEEE Workshop on Robot and Human 
Communication, pp. 111-116. 

[7] Makhoul, J., Roucos, S., and Gish, H., (1985) "Vector Quantization in Speech Coding" 
Proc. IEEE, Vol. 73, No. 11, pp. 1551-1587. 

[8] Murase, H.,and Nayar, S. K., (1993) "Learning and Recognition of 3D Objects from 
Appearance", Proc. IEEE Qualitative Vision Workshop, New York City, pp. 39-49. 

[9] Poggio, T., and Edelman, S., (1990) "A Network that Learns to Recognize Three 
Dimensional Objects," Nature, Vol. 343, No. 6255, pp. 263-266. 

[10] Sakoe, H., and Chiba, S., (1980) "Dynamic Programming optimization for spoken 
word recognition", IEEE Trans. ASSP, Vol. 26, pp. 623-625. 

[11] Turk, M., and Pentland, A. P., (1991) "Eigenfaces for Recognition", Journal of 
Cognitive Neuroscience, vol. 3, pp. 71-89. 

[12] Ullman, S., and Basri, R, (1991)"Recognition by Linear Combinations of Models," 
IEEE PAMI, Vol. 13, No. 10, pp. 992-1007. 


