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Abstract 

We have recently shown that the widely known LMS algorithm is 
an H OO optimal estimator. The H OO criterion has been introduced, 
initially in the control theory literature, as a means to ensure ro­
bust performance in the face of model uncertainties and lack of 
statistical information on the exogenous signals. We extend here 
our analysis to the nonlinear setting often encountered in neural 
networks, and show that the backpropagation algorithm is locally 
H OO optimal. This fact provides a theoretical justification of the 
widely observed excellent robustness properties of the LMS and 
backpropagation algorithms. We further discuss some implications 
of these results. 

1 Introduction 

The LMS algorithm was originally conceived as an approximate recursive procedure 
that solves the following problem (Widrow and Hoff, 1960): given a sequence of n x 1 
input column vectors {hd, and a corresponding sequence of desired scalar responses 
{ di }, find an estimate of an n x 1 column vector of weights w such that the sum 
of squared errors, L:~o Idi - hi w1 2 , is minimized. The LMS solution recursively 
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updates estimates of the weight vector along the direction of the instantaneous gra­
dient of the squared error. It has long been known that LMS is an approximate 
minimizing solution to the above least-squares (or H2) minimization problem. Like­
wise, the celebrated backpropagation algorithm (Rumelhart and McClelland, 1986) 
is an extension of the gradient-type approach to nonlinear cost functions of the form 
2:~o I di - hi ( W ) 12 , where hi ( .) are known nonlinear functions (e. g., sigmoids). It 
also updates the weight vector estimates along the direction of the instantaneous 
gradients. 

We have recently shown (Hassibi, Sayed and Kailath, 1993a) that the LMS algo­
rithm is an H<Xl-optimal filter, where the H<Xl norm has recently been introduced 
as a robust criterion for problems in estimation and control (Zames, 1981). In gen­
eral terms, this means that the LMS algorithm, which has long been regarded as 
an approximate least-mean squares solution, is in fact a minimizer of the H<Xl error 
norm and not of the JI2 norm. This statement will be made more precise in the 
next few sections. In this paper, we extend our results to a nonlinear setting that 
often arises in the study of neural networks, and show that the backpropagation 
algorithm is a locally H<Xl-optimal filter. These facts readily provide a theoretical 
justification for the widely observed excellent robustness and tracking properties of 
the LMS and backpropagation algorithms, as compared to, for example, exact least 
squares methods such as RLS (Haykin, 1991). 

In this paper we attempt to introduce the main concepts, motivate the results, and 
discuss the various implications. \Ve shall, however, omit the proofs for reasons of 
space. The reader is refered to (Hassibi et al. 1993a), and the expanded version of 
this paper for the necessary details. 

2 Linear HOO Adaptive Filtering 

\Ve shall begin with the definition of the H<Xl norm of a transfer operator. As 
will presently become apparent, the motivation for introducing the H<Xl norm is to 
capture the worst case behaviour of a system. 

Let h2 denote the vector space of square-summable complex-valued causal sequences 
{fk, 0 :::; k < oo}, viz., 

<Xl 
h2 = {set of sequences {fk} such that L f; fk < oo} 

k=O 

with inner product < {Ik}, {gd > = 2:~=o f; gk ,where * denotes complex 
conjugation. Let T be a transfer operator that maps an input sequence {ud to an 
output sequence {yd. Then the H<Xl norm of T is equal to 

IITII<Xl = sup IIyl12 
utO,uEh 2 II u l1 2 

where the notation 111/.112 denotes the h2-norm of the causal sequence {ttd, viz., 

2 ~<Xl * 
Ilull:? = L...Jk=o ttkUk 

The H<Xl norm may thus be regarded as the maximum energy gain from the input 
u to the output y. 
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Suppose we observe an output sequence {dd that obeys the following model: 

di = hT W + Vi (1) 

where hT = [hi1 hi2 hin ] is a known input vector, W is an unknown weight 
vector, and {Vi} is an unknown disturbance, which may also include modeling errors. 
We shall not make any assumptions on the noise sequence {vd (such as whiteness, 
normally distributed, etc.). 

Let Wi = F(do, di, ... , di) denote the estimate of the weight vector W given the 
observations {dj} from time 0 up to and including time i. The objective is to 
determine the functional F, and consequently the estimate Wi, so as to minimize a 
certain norm defined in terms of the prediction error 

ei = hT W - h T Wi-1 

which is the difference between the true (uncorrupted) output hT wand the pre­
dicted output hT Wi -1. Let T denote the transfer operator that maps the unknowns 
{w - W_1, {vd} (where W-1 denotes an initial guess of w) to the prediction errors 
{ed. The HOO estimation problem can now be formulated as follows. 

Problem 1 (Optimal HOC Adaptive Problem) Find an Hoc -optimal estima­
tion strategy Wi = F(do, d1, ... , di ) that minimizes IITlloc' and obtain the resulting 

!~ = inf IITII!:, = inf sup 
:F :F w,vEh 2 

(2) 

where Iw - w_11 2 = (w - w-1f (w - W-1), and J1- is a positive constant that reflects 
apriori knowledge as to how close w is to the initial guess W-1 . 

Note that the infimum in (2) is taken over all causal estimators F. The above 
problem formulation shows that HOC optimal estimators guarantee the smallest 
prediction error energy over all possible disturbances offixed energy. Hoc estimators 
are thus over conservative, which reflects in a more robust behaviour to disturbance 
variation. 

Before stating our first result we shall define the input vectors {hd exciting if, and 
only if, 

N 

lim L hT hi = 00 
N-+oc 

i=O 

Theoreln 1 (LMS Algorithm) Consider the model (1), and suppose we wish to 
minimize the Hoc norm of the transfer operator from the unknowns w - W-1 and 
Vi to the prediction errors ei. If the input vectors hi are exciting and 

o < J1- < i~f h:h. 
tit 

(3) 

then the minimum H oo norm is !Opt = 1. In this case an optimal Hoo estimator is 
given by the LA-IS alg01'ithm with learning rate J1-, viz. 

(4) 
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In other words, the result states that the LMS algorithm is an H oo -optimal filter. 
Moreover, Theorem 1 also gives an upper bound on the learning rate J-t that ensures 
the H oo optimality of LMS. This is in accordance with the well-known fact that 
LMS behaves poorly if the learning rate is too large. 

Intuitively it is not hard to convince oneself that "'{opt cannot be less than one. To 
this end suppose that the estimator has chosen some initial guess W-l. Then one 
may conceive of a disturbance that yields an observation that coincides with the 
output expected from W-l, i.e. 

hT W-l = hT W + Vi = di 

In this case one expects that the estimator will not change its estimate of w, so that 
Wi = W-l for all i. Thus the prediction error is 

ei = hTw - hTwi-l = hTw - hTw-l = -Vi 

and the ratio in (2) can be made arbitrarily close to one. 

The surprising fact though is that "'{opt is one and that the LMS algorithm achieves 
it. What this means is that LMS guarantees that the energy of the prediction 
error will never exceed the energy of the disturbances. This is not true for other 
estimators. For example, in the case of the recursive least-squares (RLS) algorithm, 
one can come up with a disturbance of arbitrarily small energy that will yield a 
prediction error of large energy. 

To demonstrate this, we consider a special case of model (1) where hi is now a 
scalar that randomly takes on the values + 1 or -1. For this model J-t must be less 
than 1 and we chose the value J-t = .9. We compute the Hoo norm of the transfer 
operator from the disturbances to the prediction errors for both RLS and LMS. We 
also compute the worst case RLS disturbance, and show the resulting prediction 
errors. The results are illustrated in Fig. 1. As can be seen, the H OO norm in 
the RLS case increases with the number of observations, whereas in the LMS case 
it remains constant at one. Using the worst case RLS disturbance, the prediction 
error due to the LMS algorithm goes to zero, whereas the prediction error due to 
the RLS algorithm does not. The form of the worst case RLS disturbance is also 
interesting; it competes with the true output early on, and then goes to zero. 

We should mention that the LMS algorithm is only one of a family of HOO optimal 
estimators. However, LMS corresponds to what is called the central solution, and 
has the additional properties of being the maximum entropy solution and the risk­
sensitive optimal solution (Whittle 1990, Glover and Mustafa 1989, Hassibi et al. 
1993b). 

If there is no disturbance in (1) we have the following 

Corollary 1 If in addition to the assumptions of Theorem 1 there is no disturbance 
in {1J, then LMS guarantees II e II~:::; J-t-1Iw - w_11 2 , meaning that the prediction 
error converges to zero. 

Note that the above Corollary suggests that the larger J-t is (provided (3) is satisfied) 
the faster the convergence will be. 

Before closing this section we should mention that if instead of the prediction error 
one were to consider the filtered error ej,i = hjw - hjwj, then the HOO optimal 
estimator is the so-called normalized LMS algorithm (Hassibi et al. 1993a). 
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Figure 1: Hoo norm of transfer operator as a function of the number of observations 
for (a) RLS, and (b) LMS. The true output and the worst case disturbance signal 
(dotted curve) for RLS are given in (c). The predicted errors for the RLS (dashed) 
and LMS (dotted) algorithms corresponding to this disturbance are given in (d). 
The LMS predicted error goes to zero while the RLS predicted error does not. 

3 Nonlinear HOO Adaptive Filtering 

In this section we suppose that the observed sequence {dd obeys the following 
nonlinear model 

(5) 

where hi (.) is a known nonlinear function (with bounded first and second order 
derivatives), W is an unknown weight vector, and {vd is an unknown disturbance 
sequence that includes noise and/or modelling errors. In a neural network context 
the index i in hi (.) will correspond to the nonlinear function that maps the weight 
vector to the output when the ith input pattern is presented, i.e., hi(W) = h(x(i), w) 
where x(i) is the ith input pattern. As before we shall denote by Wi = :F(do, ... , di) 
the estimate of the weight vector using measurements up to and including time i, 
and the prediction error by 

I 

ei = hi(w) - hi(Wi-1) 

Let T denote the transfer operator that maps the unknowns/disurbances 
{ W - W -1 , { vd} to the prediction errors {e;}. 

Problem 2 (Optimal Nonlinear HOO Adaptive Problem) Find 
an Hoo-optimal estimation strategy Wi = :F(do, d1, . .. , di ) that minimizes IITllooI 
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and obtain the resulting 

i'~ = inf IITII~ = inf sup 
:F :F w,vEh2 

(6) 

Currently there is no general solution to the above problem, and the class of non­
linear functions hi(.) for which the above problem has a solution is not known (Ball 
and Helton, 1992). 

To make some headway, though, note that by using the mean value theorem (5) 
may be rewritten as 

di = hi(wi-d + ~~ T (wi_d.(w - Wi-I) + Vi (7) 

where wi-l is a point on the line connecting wand Wi-I. Theorem 1 applied to (7) 
shows that the recursion 

(8) 

will yield i' = 1. The problem with the above algorithm is that the wi's are 
not known. But it suggests that the i'opt in Problem 2 (if it exists) cannot be 
less than one. Moreover, it can be seen that the backpropagation algorithm is an 
approximation to (8) where wi is replaced by Wi. To pursue this point further we 
use again the mean value theorem to write (5) in the alternative form 

ohi T ) 1 T 02hi(_ 
di = hi(wi-d+ ow (wi-d·(w-Wi-l +2(W-Wi-d . ow2 wi-d·(w-Wi-d+Vi 

(9) 
where once more Wi-l lies on the line connecting Wi-l and w. Using (9) and 
Theorem 1 we have the following result. 

Theorem 2 (Backpropagation Algorithm) Consider 
backpropagation algorithm 

the model (5) and the 

ohi 
Wi = Wi-l + J.L Ow (wi-d(di - hi(wi-d) (10) 

then if the ~~i (Wi- d are exciting, and 

. f 1 o < J.L < In --::T=-------
i ill!.. ( ) ill!..( ) ow Wi-I· ow wi-l 

(11) 

then for all nonzero w, v E h2: 

II ~~i T (wi-d(w - wi-d II~ 
-----------~~=-~--~~--~~--------------- < 1 
J.L-11w - w_112+ II Vi + !(w - wi_dT ~:::J (wi-d·(w - Wi-I) II~ -

where 
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The above result means that if one considers a new disturbance v; = Vi + ~ (w -
Wi_I)T ~::J (Wi-I).(W - Wi-I), whose second term indicates how far hi(w) is from a 
first order approximation at point Wi-I, then backpropagation guarantees that the 

energy of the linearized prediction error ~~ T (wi-d(w - Wi-I) does not exceed the 

energy of the new disturbances W - W-l and v:. 
It seems plausible that if W-I is close enough to w then the second term in v~ should 
be small and the true and linearized prediction errors should be close, so that we 
should be able to bound the ratio in (6). Thus the following result is expected, 
where we have defined the vectors {hd persistently exciting if, and only if, for all 
a E nn 

Theorem 3 (Local Hoc Optimality) Consider the model (5) and the backprop­
agation algorithm (10). Suppose that the ~':: (Wi-I) are persistently exciting, and 
that (11) is satisfied. Then for each ( > 0, there exist cSt, ch > 0 such that for all 
Iw - w-ti < cSt and all v E h2 with IVil < 82, we have 

, 12 II ej I 2 < 1 + ( 
Il-Ilw - w_112+ II v II~ -

The above Theorem indicates that the backpropagation algorithm is locally HOC 
optimal. In other words for W-l sufficiently close to w, and for sufficiently small 
disturbance, the ratio in (6) can be made arbitrarily close to one. Note that the 
conditions on wand Vi are reasonable, since if for example W is too far from W-l, 

or if some Vi is too large, then it is well known that backpropagation may get stuck 
in a local minimum, in which case the ratio in (6) may get arbitrarily large. 

As before (11) gives an upper bound on the learning rate Il, and indicates why 
backpropagation behaves poorly if the learning rate is too large. 

If there is no disturbance in (5) we have the following 

Corollary 2 If in addition to the assumptions in Theorem 3 there is no disturbance 
in (5), then for every ( > 0 there exists a 8 > 0 such that for all Iw - w-il < 8, 
the backpropagation algorithm will yield II e' II~:::; 1l-18(1 + (), meaning that the 
prediction error converges to zero. Moreover Wi will converge to w. 

Again provided (11) is satisfied, the larger Il is the faster the convergence will be. 

4 Discussion and Conclusion 

The results presented in this paper give some new insights into the behaviour of 
instantaneous gradient-based adaptive algorithms. We showed that ifthe underlying 
observation model is linear then LMS is an HOC optimal estimator, whereas if the 
underlying observation model is nonlinear then the backpropagation algorithm is 
locally HOC optimal. The HOC optimality of these algorithms explains their inherent 
robustness to unknown disturbances and modelling errors, as opposed to other 
estimation algorithms for which such bounds are not guaranteed. 
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Note that if one considers the transfer operator from the disturbances to the pre­
diction errors, then LMS (backpropagation) is H OO optimal (locally), over all causal 
estimators. This indicates that our result is most applicable in situations where 
one is confronted with real-time data and there is no possiblity of storing the train­
ing patterns. Such cases arise when one uses adaptive filters or adaptive neural 
networks for adaptive noise cancellation, channel equalization, real-time control, 
and undoubtedly many other situations. This is as opposed to pattern recognition, 
where one has a set of training patterns and repeatedly retrains the network until 
a desired performance is reached. 

Moreover, we also showed that the Hoo optimality result leads to convergence proofs 
for the LMS and backpropagation algorithms in the absence of disturbances. We 
can pursue this line of thought further and argue why choosing large learning rates 
increases the resistance of backpropagation to local minima, but we shall not do so 
due to lack of space. 

In conclusion these results give a new interpretation of the LMS and backpropaga­
tion algorithms, which we believe should be worthy of further scrutiny. 
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