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Abstract 

This paper presents a formulation for unsupervised learning of clus­
ters reflecting multiple causal structure in binary data. Unlike the 
standard mixture model, a multiple cause model accounts for ob­
served data by combining assertions from many hidden causes, each 
of which can pertain to varying degree to any subset of the observ­
able dimensions. A crucial issue is the mixing-function for combin­
ing beliefs from different cluster-centers in order to generate data 
reconstructions whose errors are minimized both during recognition 
and learning. We demonstrate a weakness inherent to the popular 
weighted sum followed by sigmoid squashing, and offer an alterna­
tive form of the nonlinearity. Results are presented demonstrating 
the algorithm's ability successfully to discover coherent multiple 
causal representat.ions of noisy test data and in images of printed 
characters. 

1 Introduction 

The objective of unsupervised learning is to identify patterns or features reflecting 
underlying regularities in data. Single-cause techniques, including the k-means al­
gorithm and the standard mixture-model (Duda and Hart, 1973), represent clusters 
of data points sharing similar patterns of Is and Os under the assumption that each 
data point belongs to, or was generated by, one and only one cluster-center; output 
activity is constrained to sum to 1. In contrast, a multiple-cause model permits more 
than one cluster-center to become fully active in accounting for an observed data 
vector. The advantage of a multiple cause model is that a relatively small number 
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of hidden variables can be applied combinatorially to generate a large data set. Fig­
ure 1 illustrates with a test set of nine 121-dimensional data vectors. This data set 
reflects two independent processes, one of which controls the position of the black 
square on the left hand side, the other controlling the right. While a single cause 
model requires nine cluster-centers to account for this data, a perspicuous multiple 
cause formulation requires only six hidden units as shown in figure 4b. Grey levels 
indicate dimensions for which a cluster-center adopts a "don't-know /don't-care" 
assertion . 

••••••••• 
Figure 1: Nine 121-dimensional test data samples exhibiting multiple cause 
structure. Independent processes control the position of the black rectangle 
on the left and right hand sides. 

While principal components analysis and its neural-network variants (Bourlard and 
Kamp, 1988; Sanger, 1989) as well as the Harmonium Boltzmann Machine (Freund 
and Haussler, 1992) are inherently multiple cause models, the hidden represen­
tations they arrive at are for many purposes intuitively unsatisfactory. Figure 2 
illustrates the principal components representation for the test data set presented 
in figure 1. Principal components is able to reconstruct the data without error 
using only four hidden units (plus fixed centroid), but these vectors obscure the 
compositional structure of the data in that they reveal nothing about the statistical 
independence of the left and right hand processes. Similar results obtain for multi­
ple cause unsupervised learning using a Harmonium network and for a feedforward 
network using the sigmoid nonlinearity. We seek instead a multiple cause formula­
tion which will deliver coherent representations exploiting "don't-know/don't-care" 
weights to make explicit the statistical dependencies and independencies present 
when clusters occur in lower-dimensional subspaces of the full J -dimensional data 
space. 

Data domains differ in ways that underlying causal processes interact. The present 
discussion focuses on data obeying a WRITE-WHITE-AND-BLACK model, under which 
hidden causes are responsible for both turning "on" and turning "off" the observed 
variables. 

a b 

Figure 2: Principal components representation for the test data from figure 
1. (a) centroid (white: -1, black: 1). (b) four component vectors sufficient 
to encode the nine data points. (lighter shadings: Cj,k < 0; grey: Cj,k = 0; 
darker shading: Cj,/.: > 0). 



Unsupervised Learning of Mixtures of Multiple Causes in Binary Data 29 

2 Mixing Functions 

A large class of unsupervised learning models share the architecture shown in figure 
3. A binary vector Di = (di ,l,di ,2, ... di,j, ... di,J) is presented at the data layer, and 
a measurement, or response vector mi = (mi ,l, mi,2, ... mi ,k, ... mi ,K) is computed at 
the encoding layer using "weights" Cj,k associating activity at data dimension j with 
activity at hidden cluster-center k. Any activity pattern at the encoding layer can 
be turned around to compute a prediction vector ri = (ri,l" ri,2, ... ri,j, ... ri,J) at the 
data layer. Different models employ different functions for performing the measure­
ment and prediction mappings, and give different interpretations to the weights. 
Common to most models is a learning procedure which attempts to optimize an 
objective function on errors between data vectors in a training set, and predictions 
of these data vectors under their respective responses at the encoding layer. 

encoding layer 

( cluster-centers) 

data layer 

d j (observed data) 

r. (predicted) 
J 

pMietion 

Figure 3: Architecture underlying a large class of unsupervised learning models. 

The key issue is the mixing function which specifies how sometimes conflicting pre­
dictions from individual hidden units combine to predict values on the data dimen­
sions. Most neural-network formulations, including principal components variants 
and the Boltzmann Machine, employ linearly weighted sum of hidden unit activity 
followed by a squashing, bump, or other nonlinearity. This form of mixing function 
permits an error in prediction by one cluster center to be cancelled out by correct 
predictions from others without consequence in terms of error in the net prediction. 
As a result, there is little global pressure for cluster-centers to adopt don't-know 
values when they are not quite confident in their predictions. 

Instead, a mult.iple cause formulation delivering coherent cluster-centers requires a 
form of nonlinearit.y in which active disagreement must result in a net "uncertain" 
or neutral prediction that results in nonzero error. 
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3 Multiple Cause Mixture Model 

Our formulation employs a zero-based representation at the data layer to simplify 
the mathematical expression for a suitable mixing function. Data values are either 1 
or -1; the sign of a weight Cj ,k indicates whether activity in cluster-center k predicts 
a 1 or -1 at data dimension j, and its magnitude (ICj,kl ~ 1) indicates strength of 
belief; Cj ,k = 0 corresponds to "don't-know /don't-care" (grey in figure 4b). 

The mixing function takes the form, 

L mi ,k(-c),k) II (1 + m"kCj,k) - 1 + L mi,kc) ,k I- II (1 - m"kCj,k) 

r.,) = k <".<0 k <". <0 k <".>0 k <".>0 

This formula is a computationally tractable approximation to an idealized mixing 
function created by linearly interpolating boundary values on the extremes of mi,k E 
{O, I} and Cj,k E {-I, 0, I} rationally designed to meet the criteria outlined above. 

Both learning and measurement operate in the context of an objective function on 
predictions equivalent to log-likelihood. The weights Cj,k are found through gradient 
ascent in this objective function, and at each training step the encoding mi of an 
observed data vector is found by gradient ascent as well. 

4 Experimental Results 

Figure 4 shows that the model converges to the coherent multiple cause represen­
tation for the test data of figure 1 starting with random initial weights. The model 
is robust with respect to noisy training data as indicated in figure 5. 

In figure 6 the model was trained on data consisting of 21 x 21 pixel images of 
registered lower case characters. Results for J( = 14 are shown indicating that the 
model has discovered statistical regularities associated with ascenders, descenders, 
circles, etc. 

a 

b ...----.--

Figure 4: Multiple Cause Mixture Model representation for the test data 
from figure 1. (a) Initial random cluster-centers. (b) Cluster-centers after 
seven training iterations (white: Cj,k = -1; grey: Cj,k = 0; black: Cj,k = 1). 
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5 Conclusion 

Ability to compress data, and statistical independence of response activities (Bar­
low, 1989), are not the only criteria by which to judge the success of an encoder 
network paradigm for unsupervised learning. For many purposes, it is equally im­
portant that hidden units make explicit statistically salient structure arising from 
causally distinct processes. 

The difficulty lies in getting the internal knowledge-bearing entities sensibly to 
divvy up responsibility for training data not just pointwise, but dimensionwise. 
Mixing functions based on linear weighted sum of activities (possibly followed by 
a nonlinearity) fail to achieve this because they fail to pressure the hidden units 
into giving up responsibility (adopting "don't know" values) for data dimensions 
on which they are prone to be incorrect. We have outlined criteria, and offered 
a specific functional form, for nonlinearly combining beliefs in a predictive mixing 
function such that statistically coherent hidden representations of multiple causal 
structure can indeed be discovered in binary data. 
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Figure 5: Multiple Cause Mixture Model results for noisy training data. (a) 
Five test data sample suites with 10% bit-flip noise. Twenty suites were 
used to train from random initial cluster-centers, resulting in the represen­
tation shown in (b) . (c) Left: Five test data samples di ; Middle: Numer­
ical activities mi,k for the most active cluster-centers (the corresponding 
cluster-center is displayed above each mi,k value); Right: reconstructions 
(predictions) ri based on the activities . N ot.e how these "clean up" the 
noisy samples from which they were computed. 



b 

Unsupervised Learning of Mixtures of Multiple Causes in Binary Data 33 

a 

Figure 6: (a) Training set of twenty-six 441-dimensional binary vectors. (b) 
Multiple Cause Mixt.ure Model representation at J{ = 14. (c) Left: Five 
test data samples di ; Middle: Numerical activities mi,k for the most active 
cluster-centers (the corresponding cluster-center is displayed above each 
mi,k value); Right: reconstructions (predictions) ri based on the activities. 
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