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Abstract 

We propose a method for improving the performance of any net­
work designed to predict the next value of a time series. Vve advo­
cate analyzing the deviations of the network's predictions from the 
data in the training set . This can be carried out by a secondary net­
work trained on the time series of these residuals. The combined 
system of the two networks is viewed as the new predictor. We 
demonstrate the simplicity and success of this method, by apply­
ing it to the sunspots data. The small corrections of the secondary 
network can be regarded as resulting from a Taylor expansion of 
a complex network which includes the combined system. \\Te find 
that the complex network is more difficult to train and performs 
worse than the two-step procedure of the combined system. 

1 INTRODUCTION 

The use of neural networks for computational tasks is based on the idea that the 
efficient way in which the nervous system handles memory and cognition is worth 
immitating. Artificial implementations are often based on a single network of math­
ematical neurons. We note, however, that in biological systems one can find collec­
tions of consecutive networks, performing a complicated task in several stages, with 
later stages refining the performance of earlier ones. Here we propose to follow this 
strategy in artificial applications. 
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We study the analysis of time series, where the problem is to predict the next ele­
ment on the basis of previous elements of the series. One looks then for a functional 
relation 

Yn = f (Yn -1 , Yn - 2, ... , Yn - m) . (1 ) 

This type of representation is particularly useful for the study of dynamical sys­
tems. These are characterized by a common continuous variable, time, and many 
correlated degrees of freedom which combine into a set of differential equations. 
Nonetheless, each variable can in principle be described by a lag-space representa­
tion of the type 1 . This is valid even if the Y = y(t) solution is unpredictable as in 
chaotic phenomena. 

Weigend Huberman and Rumelhart (1990) have studied the experimental series 
of yearly averages of sunspots activity using this approach. They have realized 
the lag-space representation on an (m, d, 1) network, where the notation implies a 
hidden layer of d sigmoidal neurons and one linear output. Using m = 12 and a 
weight-elimination method which led to d = 3, they obtained results which compare 
favorably with the leading statistical model (Tong and Lim, 1980). Both models do 
well in predicting the next element of the sunspots series. Recently, Nowlan and 
Hinton (1992) have shown that a significantly better network can be obtained if the 
training procedure includes a complexity penalty term in which the distribution of 
weights is modelled as a mixture of multiple gaussians whose parameters vary in an 
adaptive manner as the system is being trained. 

We propose an alternative method which is capable of improving the performance 
of neural networks: train another network to predict the errors of the first one, to 
uncover and remove systematic correlations that may be found in the solution given 
by the trained network, thus correcting the original predictions. This is in agreement 
with the general philosophy mentioned at the beginning, where we take from Nature 
the idea that the task does not have to be performed by one complicated network; it 
is advantageous to break it into stages of consecutive analysis steps. Starting with 
a network which is trained on the sunspots data with back-propagation, we show 
that the processed results improve considerably and we find solutions which match 
the performance of Weigend et. al. 

2 CONSTRUCTION OF THE PRIMARY NETWORK 

Let us start with a simple application of back-propagation to the construction of 
a neural network describing the sunspots data which are normalized to lie between 
o and 1. The network is assumed to have one hidden layer of sigmoidal neurons, 
hi i = 1" . " d, which receives the input of the nth vector: 

m 

hi = 0'(2: WijYn-j - Oi) 
j=l 

The output of the network, Pn, is constructed linearly, 

d 

Pn = 2: Wi hi - O. 
i=l 

(2) 

(3) 
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The error-function which we minimize is defined by 

1 N 
E = 2 L (Pn - Yn)2 

n=m+l 

(4) 

where we try to equate Pn, the prediction or output of the network, with Yn, the 
nth value of the series. This is the appropriate formulation for a training set of N 
data points which are viewed as N - m strings of length m used to predict the point 
following each string. 

We will work with two sets of data points. One will be labelled T and be used for 
training the network, and the other P will be used for testing its predictive power. 
Let us define the average error by 

1 
{s = jjSfj 2:(Pn - Yn)2 

nES 

(5) 

where the set S is either Tor P. An alternative parameter was used by Weigend et. 
al. ,in which the error is normalized by the standard deviation of the data. This 
leads to an average relative variance (arv) which is related to the average error 
through 

(6) 

Following Weigend et. al. we choose m = 12 neurons in the first layer and 
IITII = 220 data points for the training set. The following IIPII = 35 years are 
used for testing the predictions of our network. We use three sigmoidal units in the 
hidden layer and run with a slow convergence rate for 7000 periods. This is roughly 
where cross-validation would indicate that a minimum is reached. The starting 
parameters of our networks are chosen randomly. Five examples of such networks 
are presented in Table 1. 

3 THE SECONDARY NETWORK 

Given the networks constructed above, we investigate their deviations from the 
desired values 

qn = Yn - Pn· (7) 
A standard statistical test for the quality of any predictor is the analysis of the 
correlations between consecutive errors. If such correlations are found, the predictor 
must be improved. The correlations reflect a systematic deviation of the primary 
network from the true solution. We propose not to improve the primary network 
by modifying its architecture but to add to it a secondary network which uses the 
residuals qn as its new data. The latter is being trained only after the training 
session of the primary network has been completed. 

Clearly one may expect some general relation of the type 

(8) 

to exist. Looking for a structure of this kind enlarges considerably the original 
space in which we searched for a solution to 1 . We wish the secondary network 
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to do a modest task, therefore we assume that much can be gained by looking at 
the interdependence of the residuals qn on themselves. This reduces the problem to 
finding the best values of 

Tn = b(qn-l, qn-2,"', qn-I) 

which would minimize the new error function 

1 N 
E2='2 L (Tn-qn)2. 

n=I+1 

(9) 

(10) 

Alternatively, one may try to express the residual in terms of the functional values 

Tn = !2(Yn-1, Yn-2,"', Yn-I) (11) 

minimizing again the expression 10 . 

When the secondary network completes its training, we propose to view 

tn = Pn + Tn (12) 

as the new prediction of the combined system. We will demonstrate that a major 
improvement can be obtained already with a linear perceptron. This means that 
the linear regression 

or 

1 

Tn = L aIqn-i + /31 

i=l 

1 

(13) 

Tn = L a;Yn-i + /32 (14) 
i=l 

is sufficient to account for a large fraction of the systematic deviations of the primary 
networks from the true function that they were trained to represent. 

4 NUMERICAL RESULTS 

We present in Table 1 five examples of results of (12,5,1) networks, i.e. m = 12 
inputs, a hidden layer of three sigmoidal neurons and a linear output neuron. These 
five examples were chosen from 100 runs of simple back-propagation networks with 
random initial conditions by selecting the networks with the smallest R values 
(Ginzburg and Horn, 1992). This is a weak constraint which is based on letting 
the network generate a large sequence of data by iterating its own predictions, and 
selecting the networks whose distribution of function values is the closest to the 
corresponding distribution of the training set. 

The errors of the primary networks, in particular those of the prediction set €p, are 
quite higher than those quoted by Weigend et. al. who started out from a (12,8,1) 
network and brought it down through a weight elimination technique to a (12,5,1) 
structure. They have obtained the values €T = 0.059 €p = 0.06. We can reduce our 
errors and reach the same range by activating a secondary network with I = 11 to 
perform the linear regression (3.6) on the residuals of the predictions of the primary 
network. The results are the primed errors quoted in the table. Characteristically 
we observe a reduction of €T by 3 - 4% and a reduction of €p by more than 10%. 
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# fT f' T {p {' P 

1 0.0614 0.0587 0.0716 0.0620 
2 0.0600 0.0585 0.0721 0.0663 
3 0.0611 0.0580 0.0715 0.0621 
4 0.0621 0.0594 0.0698 0.0614 
5 0.0616 0.0589 0.0681 0.0604 

Table 1 
Error parameters of five networks. The unprimed errors are those of the primary 
networks. The primed errors correspond to the combined system which includes 
correction of the residuals by a linear perceptron with I = 11 , which is an autore­
gressions of the residuals. Slightly better results for the short term predictions are 
achieved by corrections based on regression of the residuals on the original input 
vectors, when the regression length is 13 (Table 2). 

# {T fT fp f' p 

1 0.061 0.059 0.072 0.062 
2 0.060 0.059 0.072 0.065 
3 0.061 0.058 0.072 0.062 
4 0.062 0.060 0.070 0.061 
5 0.062 0.059 0.068 0.059 

Table 2 
Error parameters for the same five networks. The primed errors correspond to the 
combined system which includes correction of the residuals by a linear perceptron 
based on original input vectors with I = 13. 

5 LONG TERM PREDICTIONS 

When short term prediction is performed, the output of the original network is 
corrected by the error predicted by the secondary network. This can be easily gen­
eralized to perform long term predictions by feeding the corrected output produced 
by the combined system of both networks back as input to the primary network. The 
corrected residuals predicted by the secondary network are viewed as the residuals 
needed as further inputs if the secondary network is the one performing autore­
gression of residuals. We run both systems based on regression on residuals and 
regression on functional values to produce long term predictions. 

In table 3 we present the results of this procedure for the case of a secondary 
network performing regression on residuals. The errors of the long term predictions 
are averaged over the test set P of the next 35 years. We see that the errors of 
the primary networks are reduced by about 20%. The quality of these long term 
predictions is within the range of results presented by Weigend et. al. Using the 
regression on (predicted) functional values, as in Eq. 14 , the results are improved 
by up to 15% as shown in Table 4. 
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# f2 fj f5 f~ fll 
, 

f11 

1 0.118 0.098 0.162 0.109 0.150 0.116 
2 0.118 0.106 0.164 0.125 0.131 0.101 
3 0.117 0.099 0.164 0.112 0.136 0.099 
4 0.116 0.099 0.152 0.107 0.146 0.120 
5 0.113 0.097 0.159 0.112 0.147 0.123 

Table 3 
Long term predictions into the future. fn denotes the average error of n time steps 
predictions over the P set. The unprimed errors are those of the primary networks. 
The primed errors correspond to the combined system which includes correction of 
the residuals by a linear perceptron. 

# f2 f' f' f11 
, 

2 f5 5 f11 

1 0.118 0.098 0.162 0.107 0.150 0.101 
2 0.118 0.104 0.164 0.117 0.131 0.089 
3 0.117 0.098 0.164 0.108 0.136 0.086 
4 0.117 0.098 0.152 0.105 0.146 0.105 
5 0.113 0.096 0.159 0.110 0.147 0.109 

Table 4 
Long term predictions into the future. The primed errors correspond to the com­
bined system which includes correction of the residuals by a linear perceptron based 
on the original inputs. 

6 THE COMPLEX NETWORK 

Since the corrections of the secondary network are much smaller than the charac­
teristic weights of the primary network, the corrections can be regarded as resulting 
from a Taylor expansion of a complex network which include's the combined system. 
This can be simply implemented in the case of Eq. 14 which can be incorporated in 
the complex network as direct linear connections from the input layer to the output 
neuron, in addition to the non-linear hidden layer, i.e., 

d m 

tn = L:: Wihi + L viYn-i - () . (15) 
i=l i=l 

We train such a complex network on the same problem to see how it compares with 
the two-step approach of the combined networks described in the previous chapters. 

The results depend strongly on the training rates of the direct connections, as 
compared with the training rates of the primary connections (i.e. those of the 
primary network). When the direct connections are trained faster than the primary 
ones, the result is a network that resembles a linear perceptron, with non-linear 
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corrections. In this case, the assumption of the direct connections being small 
corrections to the primary ones no longer holds. The training error and prediction 
capability of such a network are worse than those of the primary network. On the 
other hand, when the primary connections are trained using a faster training rate, 
we expect the final network to be similar in nature to the combined system. Still, 
the quality of training and prediction of these solutions is not as good as the quality 
of the combined system, unless a big effort is made to find the correct rates. Typical 
results of the various systems are presented in Table 5. 

type of network 

primary network 
learning rate of linear weights = 0.1 

learning rate of linear weights = 0.02 
combined system 

Table 5 

0.061 
0.062 
0.061 
0.058 

0.072 
0.095 
0.068 
0.062 

Short term predictions of various networks. The learning rate of primary weights 
is 0.04. 

The performance of the complex network can be better than that of the primary 
network by itself, but it is surpassed by the achievements of the combined system. 

7 DISCUSSION 

It is well known that increasing the complexity of a network is not the guaranteed 
solution to better performance (Geman et. al. 1992). In this paper we propose an 
alternative which increases very little the number of free parameters, and focuses on 
the residual errors one wants to eliminate. Still one may raise the question whether 
this cannot be achieved in one complex network. It can, provided we are allowed to 
use different updating rates for different connections. In the extreme limit in which 
one rate supersedes by far the other one, this is equivalent to a disjoint architecture 
of a combined two-step system. This emphasizes the point that a solution of a 
feedforward network to any given task depends on the architecture of the network 
as well as on its training procedure. 

The secondary network which we have used was linear, hence it defined a simple 
regression of the residual on a series of residuals or a series of function values. In 
both cases the minimum which the network looks for is unique. In the case in 
which the residual is expressed as a regression on function values, the problem can 
be recast in a complex architecture. However, the combined procedure guarantees 
that the linear weights will be small, i.e. we look for a small linear correction to the 
prediction of the primary network. If one trains all weights of the complex network 
at the same rate this condition is not met, hence the worse results. 

We advocate therefore the use of the two-step procedure of the combined set of 
networks. We note that combined set of networks. We note that the secondary 
networks perform well on all possible tests: they reduce the training errors, they 
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improve short term predictions and they do better on long term predictions as well. 
Since this approach is quite general and can be applied to any time-series forecasting 
problem, we believe it should be always tried as a correction procedure. 
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