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Abstract 

For two layer networks with n sigmoidal hidden units, the generalization error is 
shown to be bounded by 

O(E~) O( (EK)d l N) K + N og , 

where d and N are the input dimension and the number of training samples, re­
spectively. E represents the expectation on random number K of hidden units 
(1 :::; I\ :::; n). The probability Pr(I{ = k) (1 :::; k :::; n) is (kt.erl11ined by a prior 
distribution of weights, which corresponds to a Gibbs distribtt! ion of a regularizeI'. 
This relationship makes it possible to characterize explicitly how a regularization 
term affects bias/variance of networks. The bound can be obtained analytically 
for a large class of commonly used priors. It can also be applied to estimate the 
expected net.work complexity Ef{ in practice. The result provides a quantitative 
explanation on how large networks can generalize well . 

1 Introduction 

Regularization (or weight-decay) methods are widely used in supervised learning by 
adding a regularization term t.o an energy function. Although it is well known that 
such a regularization term effectively reduces network complexity by introducing 
more bias and less variance[4] to the networks, it is not clear whether and how the 
information given by a regularization term can be used alone to characterize the 
effective network complexity and how the estimated effective network complexity 
relates to the generaliza.tion error . This research attempts to provide answers to 
t.hese questions for two layer feedforward networks with sigmoidal hidden units. 
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Specifically) the effective network complexity is ch(lJ'act.erized by the expected nUI11-
bel' of hidden units determined by a Gibbs dist.ribution corresponding to a regula L'­

ization tenl1. The generalization error can then be bounded by the expected network 
complexity) and thus be tighter than the original bound given by Barron[2]. The 
new bound shows explicitly) through a bigger approximation error and a smaller 
estimation error I how a regularization term introduces more bias and less varia nce 
to the networks. It therefore provides a quantitative explanation on how a network 
larger than necessary can also generalize well under certain conditions) which can 
not be explained by the existing learning theory[9]. 

For a class of commonly-used regularizers) the expecced network complexity can 
be obtained in a closed form. It is then used to estimate the expected network 
complexity for Gaussion mixture model[6]. 

2 Background and Previous Results 

A relationship has been developed by Barron[2] between generalization error and 
network complexity for two layer net.works used for function approximation. "Ve 
will briefly describe this result in this section and give our extension subsequently. 

Consider a class of two layer networks of fixed architecture with n sigmoidal hidden 

units a.nd one (linear) output unit. Let fn(x; w) = twF)91(wP)T x) be a n eiW01'k 
1=1 

function) where wEen is the network weight vcctor comprising both Wf2) and wP) 
for 1 ::; l ::; n. w}l) and W}2) are the incoming weights to the l-th hidden unit and 
the weight from the l-th hidden unit to the output) respectively. en ~ Rn(d+1) is 
t.he weight space for n hidden unit.s (and input dimension d) . Each sigmoid unit 
!JI(Z) is assumed to be of tanh type: !J/(z) --+ ±1 as z --+ ±oo for 1 ::; I :S n 1. 
The input is xED ~ Rd. '''' ithout loss of generality) D is assumed to be a unit 
hypercube in Rd ) i.e.) all the components of x are in [·-1) 1]. 

Let f( x) be a target function defined in the sa.me domain D and satisfy some 
smoot.hness conditions [2]. Consider N training samples independently drawn from 
some distribution p(:/.:): (x1)f(:I:1)), ... ) (xN)f(;t.v)). Define an energy function e) 
where e = f1 + A LTI.~~(1U) . Ln ,N(W) is a regularization term as a function of tv 

for a. fixed II . A is a const.ant. . C1 is a quadratic error function on N training 
lV ') 

samples: e1 = J: 'L,(fn(Xi;W) - f(Xi)t· Let fll,l'.,r(x;-t'iJ) be t.he (optimal) network 
i=l . 

function such t.hat 'ttl minimizes t.he energy function e: tV = arg min e. The gen­
wEen 

eralization error Eg is defined to be the squared L'2 norm E9 = Ell f - fn,N 112 = 
EJU(x) - fn,N(X; w))2dp(x)) where E is the expectation over all training sets of 

D 
size N drawn from the same distributioll. Thus) the generalization error measnres 
the mean squared distance between the unknown function an' I the best network 
function that can be obtained for training sets of size N . The generalization error 

1 In the previous ,\'ork by Barron) t.he sigmoillal hidden units atC' '1,( ~)+1. It is easy t.o 
show that his results are applica.ble to the class of .t!1(Z))S we consider h;re. 
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Eg is shown[2] to be bounded as 

Eg ::; O(Rn,N), (1) 

where Rn ,N, called the index of resol vability [2], can be expressed as 

Rn ,N = min {II .f _ in 112 + Ln,~( tv)}, 
wEen 

(2) 

where III is the clipped fn(x; tv) (see [2]). The index of resolvability can be further 
bounded as Rn,N :::; O(~) + O(',~~logN). Therefore, the generalization error IS 

bounded as 
1 nd 

E!! :::; 0(;;) + O( N logN), (3) 

where O(~) and 0(';1 logN) are t.he bounds for approxima.tion error (bia.s) and 
esti ;:l.lnt.ion error (varia.nce), respectively. 

In addition, t.he hOllnd for E9 can be minimized if all additional regularization term 
LN (71) is used in the energy function to minimize the number of hidden units, i.e ., 

r=N Eg :::; O( V dlogN ). 

3 Open Questions and Motivations 

Two open questions, which can not be answered by the previous result, are of the 
primary interest of this work. 

I) How do large networks generalize? 

The largc networks refer to those wit.h a rat.io ~~ to he somewhat big, where TV 
and N are the t.ot.al number of independent.ly modifiable weights (lV ~ nel, for 
11 lcugc) and the number of training samples, respectively. Networks tra.ined with 
reglll<Hization t.erms may fall int.o this category. Such large networks are found 
(0 Jw abk to generalize well sometimes. JImH'H'J', when '~~{ is big, the bonnel in 
Eqll ahon (~:l) is t.oo loose t.o bOllnd the actual generaliza t.ion error meaningfully. 
Therefme. for the large networks, the tot.al number of hidden ullits n ma.y no longer 
be a. good est.imate for network complexity. Efforts have been made to develop 
measures on effective net.work complexity both analytically and cmpirically[1][5][10] . 
These measures depend on training data as well as a regularization term in an 
implicit way which make it difficult to see direct. effects of a regulariza.tion term on 
generaliza.tion error. This naturally leads t.o our second question. 

2) Is it possible to characterize network complexit.y for a cLI~~ of networks using 
only the information given by a regularizat.ion term:!? How t.o relat.e the estimated 
network complexity rigorously with generalization error? 

In practice, when a regularization term (L I1 .N(W)) is used to penalize the m;l~llitude 
of weights, it effectively minimizes the number of hidden units as ,,,,'ell even til' '1lgb a.n 
additional regularization term LN(n) is not used. This is dne to the fact tbll. some 
of the hidden units may only operate in the lineal' region of a sigmoid when their 

2This was posed as an open problem hy Solia. ei..al. [8] 
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incoming weights are small and inputs are bounded. Therefore, a Ln,N(W) term can 
effectively act like a LN(n) term that reduces the effective number of hidden units, 
and thus result in a degenerate parameter space whose degrees of freedom is fewer 
than nd. This fact was not taken into consideration in the previous work, and as 
shown later in this work, will lead to a tighter bound on Rn,N. 

In what follows, we will first define the expected network complexity, then use it to 
bound the generalization error. 

4 The Expected Network C0111plexity 

For reasons that will hecome apparent, we choose to define the effective complexity 
of a feedforward two layer network as the expected number of hidden unit.s EE 
(1 :::; J{ :::; 11) ,vhich are effectively nonlinear, i.e. operating outside t.he central 
linear regions of their sigmoid response function g(.::). '''''e define the linear region 
as an interval 1 z 1< b with b a positive constant. 

Consider the presynaptic input:: = wiT x to a hidden unit g(z), where Wi is the 
incoming weight vector for the unit. Then the unit is considered to be effectively 
linear if 1 z 1< b for all xED. This will happen if 1 Zl 1< b, where z' = wiT x' with 
x' being any vertex of the unit hypercube D. This is b~cause 1 z I:::; wiT X, where x 
is the vertex of D whose elements are t.he 8gn functions of the elements of Wi. 

Next, consider network weights as random variaJ)lcs wit.h a distribution p(w) = 
Aex1J( - Ln,N (tv)), ,,,hich corresponds t.o a. Gibbs distribution of a regularization 
term wit.h a normalizing constant. A. Consider the vector ;'1;' to be a random vector 
also wit.h eqnally probable l~s ,Hld -l's. Then I::' 1< b will be a random event. The 
probability for this hidden unit to be effectively nonlin0.ill' equals to 1- Pr(1 z 1< b), 
which can be completely determined by the distributions of weights p( 'W) and x' 
(equally probable). Let. f{ be the number of hidden units which are effectively 
nonlinear. Then t.he probability, Pr(K = k) (1 :::; k :::; n), can be determined 
through a joint probabilit.y of k hidden units that are operating beyond the central 
linear region of sigmoid fUllctions. The expected network complexity, EI<, can then 
be obtained through Pr(I< = k), which is determined by the Gibbs distribution of 
LN,n (w). The motivation on utilizing such a Gibbs distribution comes from the fact 
that Rk,N is independent of training samples but dependent. of a regularization term 
which corresponds to a prior distribution of weights. Using sHch a formulation, as 
will be shown later, the effect of a regularization term on bias and va riance ca.n be 
characterized explicitly. 

5 A New Bound for The Generalization Error 

To develop a t.ightcr houucl for the generalizat.ion error, we consider subspa.ces of 
t.he weights indexed by different number of effectively nonlinc(lr hidden units: 8 1 ~ 
8 2 . .. ~ 8 n . For ead, 8 j , there are j out of 11 hidden unit.s which are effectively 
nonlinear fo], 1 :; j :::; n. '1'11e1'e1'ore, the index ofl'esolvability T?71,N ca.n be expressed 
as 

(4) 
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where each Rk,N = min {II f - in 112 + Ln.~(w)}. Next let us consider the number 
wEe" 

of effectively nonlinear units to be random. Since the minimum is no bigger than 
the average, we have 

(5) 

where the expectation is taken over the random variable J{ utilizing the probability 
Pr(I{ = k). For each K , however, the t,yO terms in Rf(,N can be bounded as 

by the t.rian.gle ine4uality, where fn-l":,n is the actuallletwork function with n - J{ 

hidden units operating in the region bounded by the constant b, and ff( is the 
correspondillg network funct.ion which t.rea ts the 11 - J{ units as linear units. In 
addition, we have 

. ') I{d 
Ln,N(W) ::; O(II.fn-K,n - jI{ W) + O( N logN), (7) 

\vhere the f-irst term also results from the triangle inequality, and the second term 
is obtained by cliscretizing the degenerate parameter space e J{ using similar tech­
l1lques as in [2]3. Applying Taylor expansion on the t.erm \\ fn-K,n - ff( \\2, \\'e 
have 

\\ fn-K,n - ff{ \\2 ::; O(b13(n - K)). (8) 

Putting Equations (5) (6) (7) and (8) into Equation (1), \\'(' have 

1 (EK)d 6 () 
Eg ::; O(E !{) + O( N logN) + O(b (11 - EX)) + o(b)), (9) 

where EX is the expected number of hidden units which are effectively nonlinear. 
If b ::; O( -\-), we have 

n3 

1 (EI{)d 
Eg ::; O(E J() + O( N logN) . (10) 

6 A Closed Fornl Expression For a Class of Regularization 
Ternls 

For commonly used regularization terms, how can \"e actually find the probability 
distribution of the number of (nonlinear) hidden units Pr(I{ = k)? And how shall 
we evaluate EK and E J( ? 

As a simple example, we consider a special class of prior distrihutions for iid weights, 
i.e, p( w) = TIiP( Wi), where W.i are the "i<'ments of wEen. This corresponds to 
a large class of regularization terms ,,'hicIt minimize the magnitudes of individual 
weights indepcndently[7]. 

Consider each weight as a random variable with zero mean and a common variance 
(J. Then for large input dimension el, v7zZ' is approximately normal with zero-mean 

3 Deta.ils \Yill be given ill iL longer version of the pa.per in prepa.ra.tion. 
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and varia.nce (J by the Central Limit Theorem[3]. Let q denote the probability that 
a. unit is effectively nonlinear. We have 

b 
q = 2Q(- r,)' 

(Jyd 
(11 ) 

-x :;l 

where Q( -;1.:) = );- J e- T ely. Next consider the probability that J( out of n 
-co 

hidden units are nonlinear. Based 011 our (independence) assumptions on w' a.nd 
x', I( has a binomial distribution 

(71.) k n /.; Pr(I{ = I.:) = k q (1 - q) - , 

where 1 < k < n. Then 

n-1 . 

EX = nq. 

1 1 
E}, = - +~, 

\ n 

(12) 

(1:3) 

(14) 

where ~ = L HI - qr-~ + (1 - qt· Then the generalization error Eo satisfies 
i=1 

1 nqd 
Eg :::; 0(- +~) + O(-N logN) . n (15) 

7 Application 

As an example for applica.t.ions of t.he tJleoretical results, the expected network com­
plexity EJ{ is estimat.ed for G<:tussian mixture model used for time-series prediction 
(details can he found in [6]) 4. 

In genera.l, llsillg only a prior dist.ribut.ion of ,,,eights to est.ima.te the network COlll­

plexit.y EJ{ may lead to a less accurate measure on the effective net.work complexiLy 
than incorporat.ing informat.ion on training data also. However, if parameters of a 
regularization term also get optimized during training, as shown in this example , 
the resulting Gibbs prior distribution of weights may lead to a good estimate of the 
effective number of hidden units. 

Specifically, the corresponding Gibbs distribution p( 'W) of the weights from the 
Gaussion mixture is iicl, which consists of a linear combination of eight Gaussia.n 
distributions. This function results in a skewed distribntion with a sharp peak 
around the zero (see [6]). The mean and variance of the presynaptic inputs z t.o 
the hidden units can thus be estimated as 0.02 and 0.04, respectively. The other 
parameters used are n = 8, d = 12. b = 0.6 is chosen. Then q ~ 004 is obtained 
through Equation (11). The effective network complexity is EJ{ ~ 3 (or 4). The 
empirical result(10], which estima.tes the effective number of hidden units using the 
dominated eigenvalues at the hidden layer, results in about ;3 effective hidden units. 

4 Strictly speaking, the theoretical resnlts deal with l'egulariza tion terms with discrete 
weight.s. It. can a.nd ha.s been extended to continuous weight.s by D.F. McCaffrey and A .R. 
Galla.nt. Details are beyond the content of this paper. 
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Figure 1: Illustration of an increase .6.. in bias and variance Bqn as a function of q. 
A sca.ling fadar J3 = 0.25 is used for t.he convenience of the plot. 11 = 20 is chosen. 

8 Discussions 

Is this new bound for the generalization tighter than the old one which takes no 
account of l1etwork-weight.-dependent information? If so . what does it tell us? 

Compared wit.h the bOllnd in Equation (3), the new bound results in an increase .6.. 
in approximation error (bias), and qn instea.d of n as ~sLimatjon errol' (variallce). 
These two terms are plotted as functions of q in Figure (1). Since q is a. function of 
(J which characterizes how strongly the magnitude of the weights is penalized, the 
larger the (J, the less the weights get penalized, the larger the q, the more hidden 
uni ts are likely to be effectively nonlinear, thus the smaller the bias and larger the 
variance. ,\Vhen q = 1, all the hidden units are effectively nonlinear and the new 
bound reduces to the old one. This shows ho",- a regulariza.tion t.erm directly affects 
bias / variance. 

'\i\Then the estimation error dominates, the bound for the generalization error will be 
proportional to nq inst.ead of n. The value of 1'/,I}, however, depends on the choice of 
a. For small (J, the new bound can be much tighter than the old one, especially for 
large netwOl'ks with n large but nq small. This will provide a practical method to 
cstilllate gCltcrnlizn.tion errol' for large nctworks as well as an explanation of when 
rllld why hn~e networks can generalize ,,-ell. 

How tight the bound really is depends on how well Ln,l\ (lL!) is chosen. Let no denote 
t.he optimallll1ll1ber of (nonlinear) hidden units needeJ to approximate I(x). If 
Ln,N(W) is chosen so that. the corresponding 1J(W) is almost a delta. function a.t no, 
t.hen ERK,i\' ~ Rno,N, which gives a. very tight bound. Otherwise, if, for insta.nce, 
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Ln,N(W) penalizes network complexity so little that ERJ(,N :=:::: Rn,N, the bound 
will be as loose as the original one. It should also be noted that an exact value for 
the bound cannot be obtained unless some information on the unknown function f 
itself is available. 

For commonly used regularization terms, the expected network complexity can be 
estimated through a close form expression. Such expected network complexity is 
shown to be a good estimate for the actual network complexity if a Gibbs prior 
distribution of weights also gets optimized through training, and is also sharply 
peaked. More research will be done to evaluate the applica.bility of the theoretical 
results. 
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