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Abstract

For two layer networks with n sigmoidal hidden units, the generalization error is
shown to be bounded by
1 (EK)d .
O(E K) + O( N logN),
where d and N are the input dimension and the number of training samples, re-
spectively. E represents the expectation on random number K of hidden units
(1 € ' < n). The probability Pr(K = k) (1 < k < n) is determined by a prior
distribution of weights, which corresponds to a Gibbs distribution of a regularizer.
This relationship malkes it possible to characterize explicitly how a regularization
term affects bias/variance of networks. The bound can be obtained analytically
for a large class of commonly used priors. It can also be applied to estimate the
expected network complexity EN in practice. The result provides a quantitative
explanation on how large networks can generalize well.

1 Introduction

Regularization (or weight-decay) methods are widely used in supervised learning by
adding a regularization term to an energy function. Although it is well known that
such a regularization term effectively reduces network complexity by introducing
more bias and less variance[4] to the networks, it is not clear whether and how the
imformation given by a regularization term can be used alone to characterize the
eflective network complexity and how the estimated effective network complexity
relates to the generalization error. This research attempts to provide answers to
these questions for two layer feedforward networks with sigmoidal hidden units.
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Specifically, the effective network complexity is characterized by the expected num-
ber of hidden units determined by a Gibbs distribution corresponding to a regular-
ization term. The generalization error can then be bounded by the expected network
complexity, and thus be tighter than the original bound given by Barron[2]. The
new bound shows explicitly, through a bigger approximation error and a smaller
estimation error, how a regularization term introduces more bias and less variance
to the networks. It therefore provides a quantitative explanation on how a network
larger than necessary can also generalize well under certain conditions, which can
not be explained by the existing learning theory[9].

For a class of commonly-used regularizers, the expecied network complexity can
be obtained in a closed form. It is then used to estimate the expected network
complexity for Gaussion mixture model[6].

2 Background and Previous Results

A relationship has been developed by Barron[2] between generalization error and
network complexity for two layer networks used for function approximation. We
will briefly describe this result in this section and give our extension subsequently.

Consider a class of two layer networks of fixed architecture with n sigmoidal hidden
L r

units and oue (linear) output unit. Let f,(2;w) = Zw,(g)g; (w,(l)F:r:) be a network
=1

function, where w € ©,, is the network weight vector comprising both w;(g) and w,m

forl1 <I<n. wl(l) and wfg) are the incoming weights to the /[-th hidden unit and

the weight from the /-th hidden unit to the output, respectively. @, C R*(4+1) jg
the weight space for n hidden units (and input dimension d). Each sigmoid unit
91(z) is assumed to be of tanh type: g(z) — +1 as z — oo for 1 < I < n L.
The input is * € D C R4 Without loss of generality, D is assumed to be a unit
hypercube in RY i.e., all the components of z are in [-1,1].

Let f(&) be a target function defined in the same domain D and satisfy some
smoothness conditions [2]. Consider N training samples independently drawn from

some distribution p(x): (21, f(21)),..., (N, f(xx)). Define an energy function e,

L % i % .
where e = €1 + )\—"—‘R‘Fﬂ. L, n(w) is a regularization term as a function of w

for a fixed n. A is a constant. ¢; is a quadratic error function on N training
N
. 2 . 3 2
samples: e; = 3 (fu(2i; w) — f(2:))”. Let f, n(2;1%@) be the (optimal) network
=1 '
function such that @ minimizes the energy function e: w = arg mgl e. The gen-
web,

eralization error E, is defined to be the squared L% norm E, = E|| f — fan ||° =

E[(f(z) - fnlN(a);ﬁ)))Bd}_ﬂ(m), where E is the expectation over all training sets of
D

size N drawn from the same distribution. Thus, the generalization error measures

the mean squared distance between the unknown function and the best network
function that can be obtained for training sets of size N. The generalization error

'In the previous work by Barron, the sigmoidal hidden units arc i'(—f,)ﬂ

show that his results are applicable to the class of gi(z)’s we consider here.

. It is easy to
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E, is shown[2] to be bounded as

Ey < O(Ra,N), (1)
where R, y. called the index of resolvability [2], can be expressed as
e e : 2 Lpn(w)
Ry, N = zSTEIg},{” F=rfll + N i (2)

where f, is the clipped f(2;w) (see [2]). The index of resolvability can be further

bounded as R,y < O(L) + O(%%logN). Therefore, the generalization error is

bounded as
.

E, < O( ) + O log V), (3)

where O(%) and O(4%flogN) are the bounds for approximation error (bias) and
estiaintion error (\r'\rmnce), respectively.

In addition, the hound for E, can be minimized if an additional regularization term
Ly (n) is used in the energy function to minimize the number of hidden units, i.e.,

E < O(\/;fogf\' )

3 Open Questions and Motivations

Two open questions, which can not be answered by the previous result, are of the
primary interest of this work.

1) How do large networks generalize?

The large networks refer to those with a ratio E—,{; to be somewhat big, where W
and N are the total number of mdependently modifiable weights (W = nd, for
n large) and the number of training samples, respectively. Networks trained with
regularization terms may fall into this category. Such large networks are found
to be able to generalize well sometimes. However, when %‘,—" 13 big, the bound in
Equation (3) 1s too loose to bound the actual generalization error meaningfully.
Therefore. for the large networks, the total number of hidden units n may no longer
be a good estimate for network complexity. Efforts have been made to develop
measures on effective network complexity both analytically and empirically[1][5][10].
These measures depend on training data as well as a regularization term in an
unplicit way which make it difficult to see direct effects of a regularization term on
generalization error. This naturally leads to our second question.

2) Is it possible to characterize network complexity for a clus~ of networks using
only the information given by a regularization term®? How to relate the estimated
network complexity rigorously with generalization error?

In practice, when a regularization term (L, n(w)) is used to penalize the magnitude
of weights, it effectively minimizes the number of hidden units as well even thiongh an
additional regularization term Ly (n) is not used. This is due to the fact that some
of the hidden units may only operate in the linear region of a sigmoid when their

*This was posed as an open problem by Solla et.al. [8]
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incoming weights are small and inputs are bounded. Therefore, a L, n(w) term can
effectively act like a Ly (n) term that reduces the effective number of hidden units,
and thus result in a degenerate parameter space whose degrees of freedom is fewer
than nd. This fact was not taken into consideration in the previous work, and as
shown later in this work, will lead to a tighter bound on R, n.

In what follows, we will first define the expected network complexity, then use it to
bound the generalization error.

4 The Expected Network Complexity

For reasons that will become apparent, we choose to define the effective complexity
of a feedforward two layer network as the expected number of hidden units EN
(1 < K < n) which are effectively nonlinear, i.e. operating outside the central
linear regions of their sigmoid response function g(z). We define the linear region
as an interval | z |[< b with b a positive constant.

Consider the presynaptic input z = w'Tz to a hidden unit g(z), where w’ is the
incoming weight vector for the unit. Then the unit is considered to be effectively

linear if | z [< b for all z € D. This will happen if | 2’ |< b, where 2’/ = w'T 2" with

. v . T & A
z' being any vertex of the unit hypercube D. This is because | z |< w'* &, where 2
is the vertex of D whose elements are the sgn functions of the elements of w’.

Next, consider network weights as random variables with a distribution p(w) =
Aexp(—Ly n(w)), which corresponds to a Gibbs distribution of a regularization
term with a normalizing constant A. Consider the vector 2’ to be a random vector
also with equally probable 1's and —1’s. Then | 2/ |< b will be a random event. The
probability for this hidden unit to be effectively nonlinear equals to 1—Pr(| z [< b),
which can be completely determined by the distributions of weights p(w) and 2’
(equally probable). Let A be the number of hidden units which are effectively
nonlinear. Then the probability, Pr(K = k) (1 < k < n), can be determined
through a joint probability of ¥ hidden units that are operating beyond the central
linear region of sigmoid functions. The expected network complexity, EX, can then
be obtained through Pr(/ = k), which is determined by the Gibbs distribution of
L, (w). The motivation on utilizing such a Gibbs distribution comes from the fact
that Ry n is independent of training samples but dependent of a regularization term
which corresponds to a prior distribution of weights. Using such a formulation, as
will be shown later, the effect of a regularization term on bias and variance can be
characterized explicitly.

5 A New Bound for The Generalization Error

To develop a tighter bound for the generalization error, we consider subspaces of
the weights indexed by different number of effectively nonlincar hidden units: ©; C
©2... € ©,. For each O, there are j out of n hidden units which are eflectively
nonlincar for 1 < j < n. Therefore, the index of resolvability /?,, xy can be expressed
as

Ry, n = min R . 4
& igken T (4)
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, ~ 2 .
where each Ry n = main {If=Fll + &‘-'—R’,-@)} Next let us consider the number
wEB)

of effectively nonlinear units to be random. Since the minimum is no bigger than
the average, we have

R, v < ERk N, (5)

where the expectation is taken over the random variable K utilizing the probability
Pr(K = k). For each K, however, the two terms in Rk ny can be bounded as

1 f=Facxn P <O f=fx IP)+ Ol fackn — fx 1), (6)

by the triangle inequality, where f,_p , is the actual network function with n — K
hidden units operating in the region bounded by the constant b, and fx is the
corresponding network function which treats the n — K units as linear units. In
addition, we have

L () SO fomrin = Fic 1)+ OC5210g), (M)

where the first term also results from the triangle inequality, and the second term
1s obtained by discretizing the degenerate parameter space O using similar tech-

. , ; 5 2
niques as in [2]3. Applying Taylor expansion on the term || fo—x.n — fx |7, we
have

| fa-xn = fx |I° < O(°(n — K)). (8)
Putting Equations (5) (6) (7) and (8) into Equation (1), we have
1 (EI )d

E, < OB =)+ O( logN) + O(b%(n — EK)) + o(b%), 9)

where EK is the expected number of hidden units which are effectively nonlinear.
Ifb< O(*l—g-) we have
n

1 (EXN)d

By < O(B7) +0(—

logN). (10)

6 A Closed Form Expression For a Class of Regularization
Terms

For commonly used regularization terms, how can we actually find the probability
distribution of the number of (nouhneal) hidden units Pr(/{ = k)? And how shall
we evaluate EX and E—l—'?

As a simple example, we consider a special class of prior distributions for iid weights,
i.e, p(w) = M;p(w;), where w; are the vlements of w € ©,. This corresponds to
a large class of regularization terms which minimize the magnitudes of individual
weights independently[7].

Consider each weight as a random vauahle with zero mean and a common variance
o. Then for large input dimension d, *7- ' is approximately normal with zero-mean

2 - - . . . . .
“Details will be given in a longer version of the paper in preparation.
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and variance o by the Central Limit Theorem[3]. Let ¢ denote the probability that
a unit is effectively nonlinear. We have

- 2Q(~%ﬁ), (11)

where Q(—a) = :/—i-,-; [ e~ Tdy. Next consider the probability that K out of n
“T—oo

hidden units are nonlinear. Based on our (independence) assumptions on w’ and
2’, K has a binomial distribution

Pr(K = k) = (:) (1 — )%, (12)

where 1 < & < n. Then

EK = nq. (13)
1 1
n-=1 ;
where A = Y 3(1 —¢)" 7" 4 (1 — ¢)". Then the generalization error E, satisfies
=1
. 1 ngd
Eq < O(= + A) + O(—logN) (15)

7 Application

As an example for applications of the theoretical results, the expected network com-
plexity EN is estimated for Gaussian mixture model used for time-series prediction
(details can he found in [6]) *.

In general, using only a prior distribution of weights to estimmate the network com-
plexity EX may lead to a less accurate measure on the effective network complexity
than incorporating information on training data also. However, if parameters of a
regularization term also get optimized during training, as shown in this example,
the resulting Gibbs prior distribution of weights may lead to a good estimate of the
effective number of hidden units.

Specifically, the corresponding Gibbs distribution p(w) of the weights from the
Gaussion mixture is i1d, which consists of a linear combination of eight Gaussian
distributions. This function results in a skewed distribution with a sharp peak
around the zero (see [6]). The mean and variance of the presynaptic inputs z to
the hidden units can thus be estimated as 0.02 and 0.04, respectively. The other
parameters used are n = 8, d = 12. b = 0.6 is chosen. Then ¢ & 0.4 is obtained
through Equation (11). The effective network complexity is 'K ~ 3 (or 4). The
empirical result[10], which estimates the effective number of hidden units using the
dominated eigenvalues at the hidden layer, results in about 3 effective hidden units.

*Strictly speaking, the theoretical resnlts deal with regularization terms with discrete
weights. It can and has becn extended to continuous weights by D.F. McCaffrey and A.R.
Gallant. Details are beyond the content of this paper.
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[Migure 1: Ilustration of an increase A in bias and variance Bgn as a function of ¢.
A scaling factor B = 0.25 is used for the convenience of the plot. n = 20 is chosen.

& Discussions

Is this new bound for the generalization tighter than the old one which takes no
account of network-weight-dependent information? If so. what does it tell us?

Compared with the bound in Equation (3), the new bound results in an increase A
m approximation error (bias), and gn instead of n as estimation error (variance).
These two terms are plotted as functions of ¢ in Figure (1). Since ¢ 1s a function of
o which characterizes how strongly the magnitude of the weights is penalized, the
larger the o, the less the weights get penalized, the larger the ¢, the more hidden
units ave likely to be effectively nonlinear, thus the smaller the bias and larger the
variance. When ¢ = 1, all the hidden units are effectively nonlinear and the new
bound reduces to the old one. This shows how a regularization term directly affects
bias/variance.

When the estimation error dominates, the bound for the generalization error will be
proportional to ng instead of n. The value of ng, however, depends on the choice of
o. For small o, the new bound can be much tighter than the old one, especially for
large networks with n large but ng small. This will provide a practical method to
estimate generalization error for large networks as well as an explanation of when
and why large networks can generalize well.

ITow tight the bound really is depends on how well L,,  (w) is chosen. Let nq denote
the optimal number of (nonlinear) hidden units needed to approximate [(z). If
Ly, n(w) is chosen so that the corresponding p(w) is almost a delta function at ng,
then ERg n &~ Ry, ~, which gives a very tight bound. Otherwise, if, for instance,
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L, n(w) penalizes network complexity so little that ERx n &~ R, n, the bound
will be as loose as the original one. It should also be noted that an exact value for
the bound cannot be obtained unless some information on the unknown function f
itself 1s available.

For commonly used regularization terms, the expected network complexity can be
estimated through a close form expression. Such expected network complexity is
shown to be a good estimate for the actual network complexity if a Gibbs prior
distribution of weights also gets optimized through training, and is also sharply
peaked. More research will be done to evaluate the applicability of the theoretical
results.
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