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Abstract 

Neurons learning under an unsupervised Hebbian learning rule can 
perform a nonlinear generalization of principal component analysis. 
This relationship between nonlinear PCA and nonlinear neurons is 
reviewed. The stable fixed points of the neuron learning dynamics 
correspond to the maxima of the statist,ic optimized under non­
linear PCA. However, in order to predict. what the neuron learns, 
knowledge of the basins of attractions of the neuron dynamics is 
required. Here the correspondence between nonlinear PCA and 
neural networks breaks down. This is shown for a simple model. 
Methods of statistical mechanics can be used to find the optima 
of the objective function of non-linear PCA. This determines what 
the neurons can learn. In order to find how the solutions are parti­
tioned amoung the neurons, however, one must solve the dynamics. 

1 INTRODUCTION 

Linear neurons learning under an unsupervised Hebbian rule can learn to perform a 
linear statistical analysis ofthe input data. This was first shown by Oja (1982), who 
proposed a learning rule which finds the first principal component of the variance 
matrix of the input data. Based on this model, Oja (1989), Sanger (1989), and 
many others have devised numerous neural networks which find many components 
of this matrix. These networks perform principal component analysis (PCA), a 
well-known method of statistical analysis. 
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Since PCA is a form of linear analysis, and the neurons used in the PCA networks 
are linear - the output of these neurons is equal to the weighted sum of inputs; 
there is no squashing function of sigmoid - it is obvious to ask whether non-linear 
Hebbian neurons compute some form of non-linear PCA? Is this a useful way to 
understand the performance of the networks? Do these networks learn to extract 
features of the input data which are different from those learned by linear neurons? 
Currently in the literature, the phrase "non-linear PCA" is used to describe what 
is learned by any non-linear generalization of Oja neurons or other PCA networks 
(see for example, Oja, 1993 and Taylor, 1993). 

In this paper, we discuss the relationship between a particular form of non-linear 
Hebbian neurons (Priigel-Bennett and Shapiro, 1992) and a particular generaliza­
tion of non-linear PCA (Softky and Kammen 1991). It is clear that non-linear neu­
rons can perform very differently from linear ones. This has been shown through 
analysis (Priigel-Bennett and Shapiro, 1993) and in application (Karhuenen and 
Joutsensalo, 1992). It can also be very useful way of understanding what the neu­
rons learn. This is because non-linear PCA is equivalent to maximizing some objec­
tive function. The features that this extracts from a data set can be studied using 
techniques of statistical mechanics. However, non-linear PCA is ambiguous because 
there are multiple solutions. What the neuron can learn is given by non-linear PCA. 
The likelihood of learning the different solutions is governed by the dyanamics cho­
sen to implement non-linear PCA, and may differ in different implementations of 
the dynamics. 

2 NON-LINEAR HEBBIAN NEURONS 

Neurons with non-linear activation functions can learn to perform very different 
tasks from those learned by linear neurons. Nonlinear Hebbian neurons have been 
analyzed for general non-linearities by Oja (1991), and was applied to sinusoidal 
signal detection by Karhuenen and Joutsensalo (1992). 

Previously, we analysed a simple non-linear generalization of Oja's rule (Priigel­
Bennett and Shapiro, 1993). We showed how the shape of the neuron activation 
function can control what a neuron learns. Whereas linear neurons learn to a 
statistic mixture of all of the input patterns, non-linear neurons can learn to become 
tuned to individual patterns, or to small clusters of closely correlated patterns. 

In this model, each neuron has weights, Wi is the weight from the ith input, and 
responds to the usual sum of input times weights through an activation function 
A(y). This is assumed a simple power-law above a threshold and zero below it. I.e. 

(1) 

Here ¢ is the threshold, b controls the power of the power-law, xf is the ith compo­
nent of the pth pattern, and VP = Li xf Wi. Curves of these functions are shown 
in figure laj if b = 1 the neurons are threshold-linear. For b > 1 the curves can be 
thought of as low activation approximations to a sigmoid which is shown in figure 
1 b. The generalization of Oja's learning rule is that the change in the weights 8Wi 
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Neuron Activation Function 
b>1 

b<1 

• psp 

A Sigmoid Activation Function 

Figure 1: a) The form of the neuron activation function. Control by two parameters 
band <p. When b > 1, this activation function approximates a sigmoid, which is 
shown in b) . 

is given by 

6Wi = LA(VP) [xf - VP Wi ] . (2) 
P 

If b < 1, the neuron learns to average a set of patterns. If b = 1, the neuron finds 
the principal component of the pattern set. When b > 1, the neuron learns to 
distinguish one of the patterns in the presence of the others, if those others are not 
too correlated with the pattern. There is a critical correlation which is determined 
by b; the neuron learns to individual patterns which are less correlated than the 
critical value, but learns to something like the center of the cluster if the patterns 
are more correlated. The threshold controls the size of the subset of patterns which 
the neuron can respond to. 

For these neurons, the relationship between non-PCA and the activation function 
was not previously discussed. That is done in the next section. 

3 NON-LINEAR peA 

A non-linear generalization of PCA was proposed by Softky and Kammen (1991). 
In this section, the relationship between non-linear PCA and unsupervised Hebbian 
learning is reviewed. 
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3.1 WHAT IS NON-LINEAR PCA 

The principal component of a set of data is the direction which maximises the 
variance. I.e. to find the principal component of the data set, find the vector tV of 
unit length which maximises 

(3) 

Here, Xi denotes the ith component of an input pattern and < .. . > denotes 
the average over the patterns. Sofky and Kammen suggested that an appropriate 
generalization is to find the vector tV which maximizes the d-dimensional correlation, 

(4) 

They argued this would give interesting results if higher order correlations are im­
portant, or ifthe shape ofthe data cloud is not second order. This can be generalized 
further, of course, maximizing the average of any non-linear function of the input 
U(y), 

(5) 

The equations for the principal components are easily found using Lagrange multi­
pliers. The extremal points are given by 

< U' (1: WkXk )Xi >= AWi. 

k 

These points will be (local) maxima if the Hessian 1lij, 

1lij =< U"(I: WkXk)XiXj > -ADij, 

k 

Here, A is a Lagrange multiplier chosen to make Iwl2 = 1. 

3.2 NEURONS WHICH LEARN PCA 

(6) 

(7) 

A neuron learning via unsupervised Hebbian learning rule can perform this opti­
mization. This is done by associating Wi with the weight from the ith input to 
the neuron, and the data average < . > as the sum over input patterns xf. The 
nonlinear function which is optimized is determined by the integral of the activation 
function of the neuron 

A(y) = U'(y). 

In their paper, Softky and Kammen propose a learning rule which does not perform 
this optimization in general. The correct learning rule is a generalization of Oja's 
rule (equation (2) above), in this notation, 

(8) 
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This fixed points of this dynamical equation will be solutions to the extremal equa­
tion of nonlinear peA, equation (6), when the a.'3sociations 

A = (A(V)V) , 

and 
A(y) = U'(y) 

are made. 

Here (.) is interpreted as sum over patterns; this is batch learning. The rule can also 
be used incrementally, but then the dynamics are stochastic and the optimization 
might be performed only on average, and then maybe only for small enough learning 
rates. These fixed points will be stable when the Hessian ll i j is negative definite at 
the fixed point. This is now, 

which is the same as the previous, equation (7),in directions perpendicular to the 
fixed point, but contains additional terms in direction of the fixed point which 
normalize it. 

The neurons described in section 2 would perform precisely what Softky and Kam­
men proposed if the activation function was pure power-law and not thresholded; 
as it is they maximize a more complicated objective function. 

Since there is a one to one correspondence between the stable fixed points of the 
dynamics and the local maxima of the non-linear correlation measure, one says that 
these non-linear neurons compute non-linear peA. 

3.3 THEORETICAL STUDIES OF NONLINEAR PCA 

In order to understand what these neurons learn, we have studied the networks 
learning on model data drawn from statistical distributions. For very dense clusters 
p ~ 00, N fixed, the stable fixed point equations are algebraic. In a few simple 
cases they can be solved. For example, if the data is Gaussian or if the data cloud is 
a quadratic cloud (a function of a quadratic form), the neuron learns the principal 
component, like the linear neuron. Likewise, if the patterns are not random, the 
fixed point equations can be solved in some cases. 

For large number of patterns in high dimensions fluctuations in the data are im­
portant (N and P goes to 00 together in some way). In this case, methods of 
statistical mechanics can be used to average over the data. The objective function 
of the non-linear peA acts as (minus) the energy in statistical mechanics. The free 
energy is formally, 

F =< IOg(D. J Of, 6 (t wl- I) exp (3U(V) > . (10) 

In the limit that f3 is large, this calculation finds the local maxima of U. In this 
form of analysis, the fact that the neuron optimizes an objective function is very 
important. This technique was used to produce the results outlined in section 2. 
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3.4 WHAT NON-LINEAR peA FAILS TO REVEAL 

In the linear peA, there is one unique solution, or if there are many solutions 
it is because the solutions are degenerate. However, for the non-linear situation, 
there are many stable fixed points of the dynamics and many local maxima of the 
non-linear correlation measure. 

This has two effects. First, it means that you cannot predict what the neuron will 
learn simply by studying fixed point equations. This tells you what the neuron 
might learn, but the probability that this solution will be can only be ascertained if 
the dynamics are understood. This also breaks the relationship between non-linear 
peA and the neurons, because, in principle, there could be other dynamics which 
have the same fixed point structure, but do not have the same basins of attraction. 
Simple fixed point analysis would be incapable of predicting what these neurons 
would learn. 

4 PARTITIONING 

An important question which the fixed-point analysis, or corresponding statistical 
mechanics cannot address is: what is the likelihood of learning the different solu­
tions? This is the essential ambiguity of non-linear peA - there are many solutions 
and the size of the basin of attractions of each is determined by the dynamics, not 
by local maxima of the nonlinear correlation measure. 

As an example, we consider the partitioning of the neurons described in section 2. 
These neurons act much like neurons in competitive networks, they become tuned to 
individual patterns or highly correlated clusters. Given that the density of patterns 
in the input set is p(i), what is the probability p(i) that a neuron will become 
tuned to this pattern. It is often said that the desired result should be p(i) = p(i), 
although for Kohonen I-d feature maps ha.~ been shown to be p(i) = p(i)2/3 (see 
for example, Hertz, Krogh, and Palmer 1991). 

We have found that he partitioning cannot be calculated by finding the optima 
of the objective function . For example, in the case of weakly correlated patterns, 
the global maxima is the most likely pattern, whereas all of the patterns are local 
maxima. To determine the partitioning, the basin of attraction of each pattern 
must be computed. This could be different for different dynamics with the same 
fixed point structure. 

In order to determine the partitioning, the dynamics must be understood. The 
details will be described elsewhere (Priigel-Bennett and Shapiro, 1994). For the 
case of weakly correlated patterns, a neuron will learn a pattern for which 

p(xp)(Vcr/- 1 > p(xq)(Voq)b-l Vq f- p. 

Here Vcr is the initial overlap (before learning) of the neuron's weights with the pth 
pattern. This defines the basin of attraction for each pattern. 

In the large P limit and for random patterns 

p(i) ~ p(iYx (11) 
where a ~ 210g(P)/(b -1), P is the number of patterns, and where b is a parameter 
that controls the non-linearity of the neuron's response. If b is chosen so that a = 1, 
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then the probability of a neuron learning a pattern will be proportional to the 
frequency with which the pattern is presented. 

5 CONCLUSIONS 

The relationship between a non-linear generalization of Oja's rule and a non-linear 
generalization of PCA was reviewed. Non-linear PCA is equivalent to maximizing a 
objective function which is a statistical measure of the data set. The objective func­
tion optimized is determined by the form of the activation function of the neuron. 
Viewing the neuron in this way is useful, because rather than solving the dynamics, 
one can use methods of statistical mechanics or other methods to find the maxima 
of the objective function. Since this function has many local maxima, however, 
these techniques cannot determine how the solutions are partitioned amoung the 
neurons. To determine this, the dynamics must be solved. 
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