
High Performance Neural Net Simulation
on a Multiprocessor System with

"Intelligent" Communication

Urs A. Miiller, Michael Kocheisen, and Anton Gunzinger
Electronics Laboratory, Swiss Federal Institute of Technology

CH-B092 Zurich, Switzerland

Abstract

The performance requirements in experimental research on arti­
ficial neural nets often exceed the capability of workstations and
PCs by a great amount. But speed is not the only requirement.
Flexibility and implementation time for new algorithms are usually
of equal importance. This paper describes the simulation of neural
nets on the MUSIC parallel supercomputer, a system that shows a
good balance between the three issues and therefore made many
research projects possible that were unthinkable before. (MUSIC
stands for Multiprocessor System with Intelligent Communication)

1 Overview of the MUSIC System

The goal of the MUSIC project was to build a fast parallel system and to use it in
real-world applications like neural net simulations, image processing or simulations
in chemistry and physics [1, 2]. The system should be flexible, simple to program
and the realization time should be short enough to not have an obsolete system by
the time it is finished. Therefore, the fastest available standard components were
used. The key idea of the architecture is to support the collection and redistribution
of complete data blocks by a simple, efficient and autonomously working commu­
nication network realized in hardware. Instead of considering where to send data
and where from to receive data, each processing element determines which part of
a (virtual) data block it has produced and which other part of the same data block
it wants to receive for the continuation of the algorithm.

888

Parallel Neural Net Simulation 889

Host computer
(Sun, PC, Macintosh)
- user terminal
- mass storage

SCSI

r··-.. ····_·· _··· __ ·· __ ···_·····_·····_····_··_-···_·1 _ ••• __ •• _ ... _ •• _ •• _- ._ ••••• _ ••• _ •• _ ••• _ ••

! MUSIC board I .:.! Board MUSIC board
! Bo~ I
i manager I II' manager
I :
I : I

.. I. - ------.1
Transputer links

PE PE

32+8 bit, 5 MHz

Figure 1: Overview of the MUSIC hardware

110 board

vo

Outside world

Figure 1 shows an overview of the MUSIC architecture. For the realization of the
communication paradigm a ring architecture has been chosen. Each processing
element has a communication interface realized with a XILINX 3090 programmable
gate array. During communication the data is shifted through a 40-bit wide bus (32
bit data and 8 bit token) operated at a 5-MHz clock rate. On each clock cycle, the
processing elements shift a data value to their right neighbors and receive a new
value from their left neighbors. By counting the clock cycles each communication
interface knows when to copy data from the stream passing by into the local memory
of its processing element and, likewise, when to insert data from the local memory
into the ring. The tokens are used to label invalid data and to determine when a
data value has circulated through the complete ring.

Three processing elements are placed on a 9 x 8.5-inch board, each of them consist­
ing of a Motorola 96002 floating-point processor, 2 Mbyte video (dynamic) RAM,
1 Mbyte static RAM and the above mentioned communication controller. The
video RAM has a parallel port which is connected to the processor and a serial port
which is connected to the communication interface. Therefore, data processing is
almost not affected by the communication network's activity and communication
and processing can overlap in time. This allows to use the available communication
bandwidth more efficiently. The processors run at 40 MHz with a peak performance
of 60 MFlops. Each board further contains an Inmos T425 transputer as a board

890 Milller, Kocheisen, and Gunzinger

N umber of processing elments:
Peak performance:

Floating-point format:
Memory:

Programming language:
Cabinet:
Cooling:

Total power consumption:
Host computer:

60
3.6 Gflops
44 bit IEEE single extended precision
180 Mbyte
C, Assembler
19-inch rack
forced air cooling
less than 800 Watt
Sun workstation, PC or Macintosh

Table 1: MUSIC system technical data

manager, responsible for performance measurements and data communication with
the host (a Sun workstation, PC or Macintosh).

In order to provide the fast data throughput required by many applications, special
I/O modules (for instance for real-time video processing applications) can be added
which have direct access to the fast ring bus. An SCSI interface module for four
parallel SCSI-2 disks, which is currently being developed, will allow the storage
of huge amount of training data for neural nets. Up to 20 boards (60 processing
elements) fit into a standard 19-inch rack resulting in a 3.6-Gflops system. MUSIC's
technical data is summarized in Table 1.

For programming the communication network just three library functions are nec­
essary: Init_commO to specify the data block dimensions and data partitioning,
Data.IeadyO to label a certain amount of data as ready for communication and
Wait...ciataO to wait for the arrival of the expected data (synchronization). Other
functions allow the exchange and automatic distribution of data blocks between the
host computer and MUSIC and the calling of individual user functions. The activity
of the transputers is embedded in these functions and remains invisible for the user.

Each processing element has its own local program memory which makes MUSIC
a MIMD machine (multiple instructions multiple data). However, there is usually
only one program running on all processing elements (SPMD = single program mul­
tiple data) which makes programming as simple or even simpler as programming a
SIMD computer (single instruction multiple data). The difference to SIMD machines
is that each processor can take different program pathes on conditional branches
without the performance degradation that occurs on SIMD computers in such a
case. This is especially important for the simulation of neural nets with nonregular
local structures.

2 Parallelization of Neural Net Algorithms

The first implemented learning algorithm on MUSIC was the well-known back­
propagation applied to fully connected multilayer perceptrons [3]. The motivation
was to gain experience in programming the system and to demonstrate its perfor­
mance on a real-world application. All processing elements work on the same layer
a time, each of them producing an individual part of the output vector (or error
vector in the backward path) [1]. The weights are distributed to the processing
elements accordingly. Since a processing element needs different weight subsets in

Parallel Neural Net Simulation 891

200.-----.-----~----._----._----~----_n

50

900-600-30

----:­,.../-:--..
v' 300-200-10

~~;..-.. ~.-.~ : :;.-.; ... : + ~ ~ ~ .
................ + + 203-80-26

.....•
...... I!JI!JI!IDI!JI!JIII!JIiIIiII!JIDIiI

•••• ~ II

O~ ____ L-____ L-____ ~ ____ ~ ____ ~ ____ -U

o 10 20 30 40 50 60
Number of processing elements

Figure 2: Estimated (lines) and measured (points) back-propagation performance
for different neural net sizes.

the forward and in the backward path, two subsets are stored and updated on each
processing element. Each weight is therefore stored and updated twice on different
locations on the MUSIC system [1]. This is done to avoid the communication of
the weights during learning what would cause a saturation of the communication
network. The estimated and experimentally measured speedup for different sizes of
neural nets is illustrated in Figure 2.

Another frequently reported parallelization scheme is to replicate the complete net­
work on all processing elments and to let each of them work on an individual subset
of the training patterns [4, 5, 6]. The implementation is simpler and the commu­
nication is reduced. However, it does not allow continuous weight update, which is
known to converge significantly faster than batch learning in many cases. A com­
parison of MUSIC with other back-propagation implementations reported in the
literature is shown in Table 2.

Another category of neural nets that have been implemented on MUSIC are cellular
neural nets (CNNs) [10]. A CNN is a two-dimensional array of nonlinear dynamic
cells, where each cell is only connected to a local neighborhood [11, 12]. In the
MUSIC implementation every processing elment computes a different part of the
array. Between iteration steps only the overlapping parts of the neighborhoods
need to be communicated. Thus, the computation to communication ratio is very
high resulting in an almost linear speedup up to the maximum system size. CNNs
are used in image processing and for the modeling of biological structures.

3 A Neural Net Simulation Environment

After programming all necessary functions for a certain algorithm (e.g. forward
propagate, backward propagate, weight update, etc.) they need to be combined

892 Muller, Kocheisen, and Gunzinger

System

PC (80486, 50 MHz)_*
Sun (Sparcstation 10)*
Alpha Station (150 MHz)*
Hypercluster [7]
Warp [4]
CM-2** [6]
Cray Y-MP C90***
RAP [8]
NEC SX-3***
MUSIC*
Sandy /8** [9]
GFll [5]

*Own measurements
**Estimated numbers

No. of
PEs

1
1
1

64
10
64K

1
40

1
60

256
356

***No published reference available.

Performance Cont.
forward Learmng Peak weight
[MCPS] (McuPS] (%) update

1.1 0.47 38.0 Yes
3.0 1.1 43_0 Yes
8.3 3.2 8.6 Yes

27.0 9.9 - -
- 17.0 - No

180.0 40.0 - No
220.3 65.6 - Yes
574.0 106.0 50.0 Yes

- 130.0 9.6 Yes
504.0 247.0 28.0 Yes

- 583.0 31.0 Yes
- 901.0 54.0 No

Table 2: Comparison of floating-point back-propagation implementations. "PEs"
means processing elements, "MCPS" stands for millions of connections per second
in the forward path and "MCUPS" is the number of connection updates per second
in the learning mode, including both forward and backward path. Note that not all
implementations allow continuous weight update.

in order to construct and train a specific neural net or to carry out a series of
experiments. This can be done using the same programming language that was
used to program the neural functions (in case of MUSIC this would be C). In this
case the programmer has maximum flexibility but he also needs a good knowledge
of the system and programming language and after each change in the experimental
setup a recompilation of the program is necessary.

Because a set of neural functions is usually used by many different researchers who,
in many cases, don't want to be involved in a low-level (parallel) programming of
the system, it is desirable to have a simpler front-end for the simulator. Such a
front-end can be a shell program which allows to specify various parameters of the
algorithm (e.g. number of layers, number of neurons per layer, etc.). The usage of
such a shell can be very easy and changes in the experimental setup don't require
recompilation of the code. However, the flexibility for experimental research is
usually too much limited with a simple shell program. We have chosen a way in
between: a command language to combine the neural functions which is interactive
and much simpler to learn and to use than an ordinary programming language like
C or Fortran. The command language should have the following properties:

- interactive
- easy to learn and to use
- flexible
- loops and conditional branches
- variables
- transparent interface to neural functions.

Parallel Neural Net Simulation 893

Instead of defining a new special purpose command language we decided to consider
an existing one. The choice was Basic which seems to meet the above requirements
best. It is easy to learn and to use, it is widely spread, flexible and interactive. For
this purpose a Basic interpreter, named Neuro-Basic, was written that allows the
calling of neural (or other) functions running parallel on MUSIC. From the Basic
level itself the parallelism is completely invisible. To allocate a new layer with 300
neurons, for instance, one can type

a = new_layer(300)

The variable a afterwards holds a pointer to the created layer which later can be
used in other functions to reference that layer. The following command propagates
layer a to layer b using the weight set w

propagate (a, b, w)

Other functions allow the randomization of weights, the loading of patterns and
weight sets, the computation of mean squared errors and so on. Each instruction
can be assigned to a program line and can then be run as a program. The sequence

10 a = new_layer(300)
20 b = new_layer(10)
30 w = new_weights(a, b)

for instance defines a two-layer perceptron with 300 input and 10 output neurons be­
ing connected with the weights w. Larger programs, loops and conditional branches
can be used to construct and train complete neural nets or to automatically run
complete series of experiments where experimental setups depend on the result of
previous experiments. The Basic environment thus allows all kinds of gradations in
experimental research, from the interactive programming of small experiments till
large off-line learning jobs. Extending the simulator with new learning algorithms
means that the programmer just has to write the parallel code of the actual algo­
rithm. It can then be controlled by a Basic program and it can be combined with
already existing algorithms.

The Basic interpreter runs on the host computer allowing easy access to the in­
put/output devices of the host. However, the time needed for interpreting the
commands on the host can easily be in the same order of magnitude as the runtime
of the actual functions on the attached parallel processor array. The interpretation
of a Basic program furthermore is a sequential part of the system (it doesn't run
faster if the system size is increased) which is known to be a fundamental limit in
speedup (Amdahls law [13]). Therefore the Basic code is not directly interpreted on
the host but first is compiled to a simpler stack oriented meta-code, named b-code,
which is afterwards copied and run on all processing elements at optimum speed.
The compilation phase is not really noticeable to the user since compiling 1000
source lines takes less than a second on a workstation.

Note that Basic is not the programming language for the MUSIC system, it is a
high level command language for the easy control of parallel algorithms. The actual
programming language for MUSIC is C or Assembler.

894 Muller, Kocheisen, and Gunzinger

Of course, Neuro-Basic is not restricted to the MUSIC system. The same principle
can be used for neural net simulation on conventional workstations, vector comput­
ers or other parallel systems. Furthermore, the parallel algorithms of MUSIC also
run on sequential computers. Simulations in Neuro-Basic can therefore be executed
locally on a workstation or PC as well.

4 Conclusions

Neuro-Basic running on MUSIC proved to be an important tool to support exper­
imental research on neural nets. It made possible to run many experiments which
could not have been carried out otherwise. An important question, however, is,
how much more programming effort is needed to implement a new algorithm in
the Neuro-Basic environment compared to an implementation on a conventional
workstation and how much faster does it run.

Algorithm additional speedup
programming

Back-propagation ~ C) x 2 60
Back-propagation (Assembler) x 8 240
Cellular neural nets (CNN) x 3 60

Table 3: Implementation time and performance ratio of a 60-processor MUSIC
system compared to a Sun Sparcstation-10

Table 3 contains these numbers for back-propagation and cellular neural nets. It
shows that if an additional programming effort of a factor two to three is invested
to program the MUSIC system in C, the return of investment is a speedup of ap­
proximately 60 compared to a Sun Sparcstation-10. This means one year of CPU
time on a workstation corresponds to less than a week on the MUSIC system.

Acknowledgements

We would like to express our gratitude to the many persons who made valuable
contributions to the project, especially to Peter Kohler and Bernhard Baumle for
their support of the MUSIC system, Jose Osuna for the CNN implementation and
the students Ivo Hasler, Bjorn Tiemann, Rene Hauck, Rolf Krahenbiihl who worked
for the project during their graduate work.

This work was funded by the Swiss Federal Institute of Technology, the Swiss N a­
tional Science Foundation and the Swiss Commission for Support of Scientific Re­
search (KWF).

References

[1] Urs A. Miiller, Bernhard Baumle, Peter Kohler, Anton Gunzinger, and Walter
Guggenbiihl. Achieving supercomputer performance for neural net simulation
with an array of digital signal processors. IEEE Micro Magazine, 12(5):55-65,
October 1992.

Parallel Neural Net Simulation 895

[2] Anton Gunzinger, Urs A. Miiller, Walter Scott, Bernhard Bliumle, Peter
Kohler, Hansruedi Vonder Miihll, Florian Miiller-Plathe, Wilfried F. van Gun­
steren, and Walter Guggenbiihl. Achieving super computer performance with
a DSP array processor. In Robert Werner, editor, Supercomputing '92, pages
543-550. IEEEj ACM, IEEE Computer Society Press, November 16-20, 1992,
Minneapolis, Minnesota 1992.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen­
tation by error propagation. In David E. Rumelhart and James L. McClelland,
editors, Parallel Distributet Processing: Explorations in the Microstructure of
Cognition, volume 1, pages 318-362. Bradford Books, Cambridge MA, 1986.

[4] Dean A. Pomerleau, George L. Gusclora, David S. Touretzky, and H. T. Kung.
Neural network simulation at Warp speed: How we got 17 million connections
per second. In IEEE International Conference on Neural Networks, pages
11.143-150, July 24-27, San Diego, California 1988.

[5] Michael Witbrock and Marco Zagha. An implementation of backpropaga­
tion learning on GF11, a large SIMD parallel computer. Parallel Computing,
14(3):329-346, 1990.

[6] Xiru Zhang, Michael Mckenna, Jill P. Mesirov, and David L. Waltz. An ef­
ficient implementation of the back-propagation algorithm on the Connection
Machine CM-2. In David S. Touretzky, editor, Advances in Neural Information
Processing Systems (NIPS-89), pages 801-809,2929 Campus Drive, Suite 260,
San Mateo, CA 94403, 1990. Morgan Kaufmann Publishers.

[7] Heinz Miihlbein and Klaus Wolf. Neural network simulation on parallel com­
puters. In David J. Evans, Gerhard R. Joubert, and Frans J. Peters, editors,
Parallel Computing-89, pages 365-374, Amsterdam, 1990. North Holland.

[8] Phil Kohn, Jeff Bilmes, Nelson Morgan, and James Beck. Software for ANN
training on a Ring Array Processor. In John E. Moody, Steven J. Hanson,
and Richard P. Lippmann, editors, Advances in Neural Information Processing
Systems 4 (NIPS-91), 2929 Campus Drive, Suite 260, San Mateo, California
94403, 1992. Morgan kaufmann.

[9] Hideki Yoshizawa, Hideki Kato Hiroki Ichiki, and Kazuo Asakawa. A
highly parallel architecture for back-propagation using a ring-register data
path. In 2nd International Conference on Microe/ectrnics for Neural Networks
(ICMNN-91), pages 325-332, October 16-18, Munich 1991.

[10] J. A. Osuna, G. S. Moschytz, and T. Roska. A framework for the classifica­
tion of auditory signals with cellular neural networks. In H. Dedieux, editor,
Procedings of 11. European Conference on Circuit Theory and Design, pages
51-56 (part 1). Elsevier, August 20 - Sept. 3 Davos 1993.

[11] Leon O. Chua and Lin Yang. Cellular neural networks: Theory. IEEE Trans­
actions on Circuits and Systems, 35(10):1257-1272, October 1988.

[12] Leon O. Chua and Lin Yang. Cellular neural networks: Applications. IEEE
Transactions on Circuits and Systems, 35(10):1273-1290, October 1988.

[13] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In AFIPS Spring Computer Conference Atlantic
City, NJ, pages 483-485, April 1967.

