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Abstract 

The performance requirements in experimental research on arti­
ficial neural nets often exceed the capability of workstations and 
PCs by a great amount. But speed is not the only requirement. 
Flexibility and implementation time for new algorithms are usually 
of equal importance. This paper describes the simulation of neural 
nets on the MUSIC parallel supercomputer, a system that shows a 
good balance between the three issues and therefore made many 
research projects possible that were unthinkable before. (MUSIC 
stands for Multiprocessor System with Intelligent Communication) 

1 Overview of the MUSIC System 

The goal of the MUSIC project was to build a fast parallel system and to use it in 
real-world applications like neural net simulations, image processing or simulations 
in chemistry and physics [1, 2]. The system should be flexible, simple to program 
and the realization time should be short enough to not have an obsolete system by 
the time it is finished. Therefore, the fastest available standard components were 
used. The key idea of the architecture is to support the collection and redistribution 
of complete data blocks by a simple, efficient and autonomously working commu­
nication network realized in hardware. Instead of considering where to send data 
and where from to receive data, each processing element determines which part of 
a (virtual) data block it has produced and which other part of the same data block 
it wants to receive for the continuation of the algorithm. 
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Figure 1: Overview of the MUSIC hardware 
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Figure 1 shows an overview of the MUSIC architecture. For the realization of the 
communication paradigm a ring architecture has been chosen. Each processing 
element has a communication interface realized with a XILINX 3090 programmable 
gate array. During communication the data is shifted through a 40-bit wide bus (32 
bit data and 8 bit token) operated at a 5-MHz clock rate. On each clock cycle, the 
processing elements shift a data value to their right neighbors and receive a new 
value from their left neighbors. By counting the clock cycles each communication 
interface knows when to copy data from the stream passing by into the local memory 
of its processing element and, likewise, when to insert data from the local memory 
into the ring. The tokens are used to label invalid data and to determine when a 
data value has circulated through the complete ring. 

Three processing elements are placed on a 9 x 8.5-inch board, each of them consist­
ing of a Motorola 96002 floating-point processor, 2 Mbyte video (dynamic) RAM, 
1 Mbyte static RAM and the above mentioned communication controller. The 
video RAM has a parallel port which is connected to the processor and a serial port 
which is connected to the communication interface. Therefore, data processing is 
almost not affected by the communication network's activity and communication 
and processing can overlap in time. This allows to use the available communication 
bandwidth more efficiently. The processors run at 40 MHz with a peak performance 
of 60 MFlops. Each board further contains an Inmos T425 transputer as a board 
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N umber of processing elments: 
Peak performance: 

Floating-point format: 
Memory: 

Programming language: 
Cabinet: 
Cooling: 

Total power consumption: 
Host computer: 

60 
3.6 Gflops 
44 bit IEEE single extended precision 
180 Mbyte 
C, Assembler 
19-inch rack 
forced air cooling 
less than 800 Watt 
Sun workstation, PC or Macintosh 

Table 1: MUSIC system technical data 

manager, responsible for performance measurements and data communication with 
the host (a Sun workstation, PC or Macintosh). 

In order to provide the fast data throughput required by many applications, special 
I/O modules (for instance for real-time video processing applications) can be added 
which have direct access to the fast ring bus. An SCSI interface module for four 
parallel SCSI-2 disks, which is currently being developed, will allow the storage 
of huge amount of training data for neural nets. Up to 20 boards (60 processing 
elements) fit into a standard 19-inch rack resulting in a 3.6-Gflops system. MUSIC's 
technical data is summarized in Table 1. 

For programming the communication network just three library functions are nec­
essary: Init_commO to specify the data block dimensions and data partitioning, 
Data.IeadyO to label a certain amount of data as ready for communication and 
Wait...ciataO to wait for the arrival of the expected data (synchronization). Other 
functions allow the exchange and automatic distribution of data blocks between the 
host computer and MUSIC and the calling of individual user functions. The activity 
of the transputers is embedded in these functions and remains invisible for the user. 

Each processing element has its own local program memory which makes MUSIC 
a MIMD machine (multiple instructions multiple data). However, there is usually 
only one program running on all processing elements (SPMD = single program mul­
tiple data) which makes programming as simple or even simpler as programming a 
SIMD computer (single instruction multiple data). The difference to SIMD machines 
is that each processor can take different program pathes on conditional branches 
without the performance degradation that occurs on SIMD computers in such a 
case. This is especially important for the simulation of neural nets with nonregular 
local structures. 

2 Parallelization of Neural Net Algorithms 

The first implemented learning algorithm on MUSIC was the well-known back­
propagation applied to fully connected multilayer perceptrons [3]. The motivation 
was to gain experience in programming the system and to demonstrate its perfor­
mance on a real-world application. All processing elements work on the same layer 
a time, each of them producing an individual part of the output vector (or error 
vector in the backward path) [1]. The weights are distributed to the processing 
elements accordingly. Since a processing element needs different weight subsets in 



Parallel Neural Net Simulation 891 

200.-----.-----~----._----._----~----_n 

50 

900-600-30 

----:­,.../-:--.. 
v' 300-200-10 

~~ .......... .;..-.. ~.-.~ .... : .... :;.-.; ... : .... + .... ~ .... ~ .... ~ . 
................ + + 203-80-26 

.....• 
...... I!JI!JI!IDI!JI!JIII!JIiIIiII!JIDIiI 

•••• ~ II 

O~ ____ L-____ L-____ ~ ____ ~ ____ ~ ____ -U 

o 10 20 30 40 50 60 
Number of processing elements 

Figure 2: Estimated (lines) and measured (points) back-propagation performance 
for different neural net sizes. 

the forward and in the backward path, two subsets are stored and updated on each 
processing element. Each weight is therefore stored and updated twice on different 
locations on the MUSIC system [1]. This is done to avoid the communication of 
the weights during learning what would cause a saturation of the communication 
network. The estimated and experimentally measured speedup for different sizes of 
neural nets is illustrated in Figure 2. 

Another frequently reported parallelization scheme is to replicate the complete net­
work on all processing elments and to let each of them work on an individual subset 
of the training patterns [4, 5, 6]. The implementation is simpler and the commu­
nication is reduced. However, it does not allow continuous weight update, which is 
known to converge significantly faster than batch learning in many cases. A com­
parison of MUSIC with other back-propagation implementations reported in the 
literature is shown in Table 2. 

Another category of neural nets that have been implemented on MUSIC are cellular 
neural nets (CNNs) [10]. A CNN is a two-dimensional array of nonlinear dynamic 
cells, where each cell is only connected to a local neighborhood [11, 12]. In the 
MUSIC implementation every processing elment computes a different part of the 
array. Between iteration steps only the overlapping parts of the neighborhoods 
need to be communicated. Thus, the computation to communication ratio is very 
high resulting in an almost linear speedup up to the maximum system size. CNNs 
are used in image processing and for the modeling of biological structures. 

3 A Neural Net Simulation Environment 

After programming all necessary functions for a certain algorithm (e.g. forward 
propagate, backward propagate, weight update, etc.) they need to be combined 
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System 

PC (80486, 50 MHz)_* 
Sun (Sparcstation 10)* 
Alpha Station (150 MHz)* 
Hypercluster [7] 
Warp [4] 
CM-2** [6] 
Cray Y-MP C90*** 
RAP [8] 
NEC SX-3*** 
MUSIC* 
Sandy /8** [9] 
GFll [5] 

*Own measurements 
**Estimated numbers 

No. of 
PEs 

1 
1 
1 

64 
10 
64K 

1 
40 

1 
60 

256 
356 

***No published reference available. 

Performance Cont. 
forward Learmng Peak weight 
[MCPS] (McuPS] (%) update 

1.1 0.47 38.0 Yes 
3.0 1.1 43_0 Yes 
8.3 3.2 8.6 Yes 

27.0 9.9 - -
- 17.0 - No 

180.0 40.0 - No 
220.3 65.6 - Yes 
574.0 106.0 50.0 Yes 

- 130.0 9.6 Yes 
504.0 247.0 28.0 Yes 

- 583.0 31.0 Yes 
- 901.0 54.0 No 

Table 2: Comparison of floating-point back-propagation implementations. "PEs" 
means processing elements, "MCPS" stands for millions of connections per second 
in the forward path and "MCUPS" is the number of connection updates per second 
in the learning mode, including both forward and backward path. Note that not all 
implementations allow continuous weight update. 

in order to construct and train a specific neural net or to carry out a series of 
experiments. This can be done using the same programming language that was 
used to program the neural functions (in case of MUSIC this would be C). In this 
case the programmer has maximum flexibility but he also needs a good knowledge 
of the system and programming language and after each change in the experimental 
setup a recompilation of the program is necessary. 

Because a set of neural functions is usually used by many different researchers who, 
in many cases, don't want to be involved in a low-level (parallel) programming of 
the system, it is desirable to have a simpler front-end for the simulator. Such a 
front-end can be a shell program which allows to specify various parameters of the 
algorithm (e.g. number of layers, number of neurons per layer, etc.). The usage of 
such a shell can be very easy and changes in the experimental setup don't require 
recompilation of the code. However, the flexibility for experimental research is 
usually too much limited with a simple shell program. We have chosen a way in 
between: a command language to combine the neural functions which is interactive 
and much simpler to learn and to use than an ordinary programming language like 
C or Fortran. The command language should have the following properties: 

- interactive 
- easy to learn and to use 
- flexible 
- loops and conditional branches 
- variables 
- transparent interface to neural functions. 
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Instead of defining a new special purpose command language we decided to consider 
an existing one. The choice was Basic which seems to meet the above requirements 
best. It is easy to learn and to use, it is widely spread, flexible and interactive. For 
this purpose a Basic interpreter, named Neuro-Basic, was written that allows the 
calling of neural (or other) functions running parallel on MUSIC. From the Basic 
level itself the parallelism is completely invisible. To allocate a new layer with 300 
neurons, for instance, one can type 

a = new_layer(300) 

The variable a afterwards holds a pointer to the created layer which later can be 
used in other functions to reference that layer. The following command propagates 
layer a to layer b using the weight set w 

propagate (a, b, w) 

Other functions allow the randomization of weights, the loading of patterns and 
weight sets, the computation of mean squared errors and so on. Each instruction 
can be assigned to a program line and can then be run as a program. The sequence 

10 a = new_layer(300) 
20 b = new_layer(10) 
30 w = new_weights(a, b) 

for instance defines a two-layer perceptron with 300 input and 10 output neurons be­
ing connected with the weights w. Larger programs, loops and conditional branches 
can be used to construct and train complete neural nets or to automatically run 
complete series of experiments where experimental setups depend on the result of 
previous experiments. The Basic environment thus allows all kinds of gradations in 
experimental research, from the interactive programming of small experiments till 
large off-line learning jobs. Extending the simulator with new learning algorithms 
means that the programmer just has to write the parallel code of the actual algo­
rithm. It can then be controlled by a Basic program and it can be combined with 
already existing algorithms. 

The Basic interpreter runs on the host computer allowing easy access to the in­
put/output devices of the host. However, the time needed for interpreting the 
commands on the host can easily be in the same order of magnitude as the runtime 
of the actual functions on the attached parallel processor array. The interpretation 
of a Basic program furthermore is a sequential part of the system (it doesn't run 
faster if the system size is increased) which is known to be a fundamental limit in 
speedup (Amdahls law [13]). Therefore the Basic code is not directly interpreted on 
the host but first is compiled to a simpler stack oriented meta-code, named b-code, 
which is afterwards copied and run on all processing elements at optimum speed. 
The compilation phase is not really noticeable to the user since compiling 1000 
source lines takes less than a second on a workstation. 

Note that Basic is not the programming language for the MUSIC system, it is a 
high level command language for the easy control of parallel algorithms. The actual 
programming language for MUSIC is C or Assembler. 
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Of course, Neuro-Basic is not restricted to the MUSIC system. The same principle 
can be used for neural net simulation on conventional workstations, vector comput­
ers or other parallel systems. Furthermore, the parallel algorithms of MUSIC also 
run on sequential computers. Simulations in Neuro-Basic can therefore be executed 
locally on a workstation or PC as well. 

4 Conclusions 

Neuro-Basic running on MUSIC proved to be an important tool to support exper­
imental research on neural nets. It made possible to run many experiments which 
could not have been carried out otherwise. An important question, however, is, 
how much more programming effort is needed to implement a new algorithm in 
the Neuro-Basic environment compared to an implementation on a conventional 
workstation and how much faster does it run. 

Algorithm additional speedup 
programming 

Back-propagation ~ C) x 2 60 
Back-propagation (Assembler) x 8 240 
Cellular neural nets (CNN) x 3 60 

Table 3: Implementation time and performance ratio of a 60-processor MUSIC 
system compared to a Sun Sparcstation-10 

Table 3 contains these numbers for back-propagation and cellular neural nets. It 
shows that if an additional programming effort of a factor two to three is invested 
to program the MUSIC system in C, the return of investment is a speedup of ap­
proximately 60 compared to a Sun Sparcstation-10. This means one year of CPU 
time on a workstation corresponds to less than a week on the MUSIC system. 
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