
GDS: Gradient Descent Generation of 
Symbolic Classification Rules 

Reinhard Blasig 
Kaiserslautern University, Germany 

Present address: Siemens AG, ZFE ST SN 41 
81730 Miinchen, Germany 

Abstract 

Imagine you have designed a neural network that successfully learns 
a complex classification task. What are the relevant input features 
the classifier relies on and how are these features combined to pro­
duce the classification decisions? There are applications where a 
deeper insight into the structure of an adaptive system and thus 
into the underlying classification problem may well be as important 
as the system's performance characteristics, e.g. in economics or 
medicine. GDSi is a backpropagation-based training scheme that 
produces networks transformable into an equivalent and concise 
set of IF-THEN rules. This is achieved by imposing penalty terms 
on the network parameters that adapt the network to the expressive 
power of this class of rules. Thus during training we simultaneously 
minimize classification and transformation error. Some real-world 
tasks demonstrate the viability of our approach. 

1 Introduction 

This paper deals with backpropagation networks trained to perform a classification 
task on Boolean or real-valued data. Given such a classification task in most cases 
it is not too difficult to devise a network architecture that is capable of learning 
the input-output relation as represented by a number of training examples. Once 
training is finished one has a black box which often does a quite good job not 

1 Gradient Descent Symbolic Rule Generation 

1093 



1094 Blasig 

only on the training patterns but also on some previously unseen test patterns. A 
good generalization performance indicates that the network has grasped part of the 
structure inherent in the classification task. The net has figured out which input 
features are relevant to make a classification decision and which are not. It has also 
modelled the way the relevant features have to be combined in order to produce the 
classifying output. In many applications it is important to get an understanding of 
this information hidden inside the neural network. Not only does this help to create 
or verify a domain theory, the analysis of this information may also serve human 
experts to determine, when and in what way the classifier will fail. 

In order to explicate the network's implicit information, we transform it into a 
set of rules. This idea is not new, cf. (Saito and Nakano, 1988), (Bochereau and 
Bourgine, 1990), (Y. Hayashi, 1991) and (Towell and Shavlik, 1992). In contrast to 
these approaches, which extract rules after BP-training is finished, we apply penalty 
terms during training to adapt the network's expressive power to that of the rules 
we want to generate. Consequently the net will be transformable into an equivalent 
set of rules. 

Due to their good comprehensibility we restrict the rules to be of the form IF 
< premise> THEN < conclusion >, where the premise as well as the conclusion 
are Boolean expressions. To actually make the transformation two problems have 
to be solved: 

• Neural nets are well known for their distributed representation of informa­
tion; so in order to transform a net into a concise and comprehensible rule 
set one has to find a way of condensing this information without substan­
tially changing it . 

• In the case of backpropagation networks a continuous activation function 
determines a node's output depending on its activation. However, the dy­
namic of this function has no counterpart in the context of rule-based de­
scriptions. 

We address these problems by introducing a penalty function Ep, which we add to 
the classification error Ec yielding the total back propagation error 

ET = ED + A * Ep. (1) 

2 The Penalty Term 

The term Ep is intended to have two effects on the network weights. First, by 
a weight decay component it aims at reducing network complexity by pushing a 
(hopefully large) fraction of the weights to O. The smaller the net, the more concise 
the rules describing its behavior will be. As a positive side effect, this component will 
tend to act as a form of "Occam's razor": simple networks are more likely to exhibit 
good generalization than complex ones. Secondly, the penalty term should minimize 
the error caused by transforming the network into a set of rules. Adopting the 
common approach that each non-input neuron represents one rule, there would be 
no transformation error if the neurons' activation function were threshold functions; 
the Boolean node output would then indicate, whether the conclusion is drawn or 
not. But since backpropagation neurons use continuous activation functions like 



GDS: Gradient Descent Generation of Symbolic Classification Rules 1095 

y = tanh (x) to transform their activation value x into the output value y, we are 
left with the difficulty of interpreting the continuous output of a neuron. Thus our 
penalty term will be designed to produce a high penalty for those neurons of the 
backpropagation net, whose behavior cannot be well approximated by threshold 
neurons, because their activation values are likely to fall into the nonsaturated 
region of the tanh-function2 . 

1.00 

0.00 

-1.00 

,.--------------
I 
I 
I 
I 
I 
I 

-3.00 0.00 3.00 

Figure 1: We regard Ixl > 3 with Iyl = I tanh(x)I > 0.9 as the regions, where a 
sigmoidal neuron can be approximated by a threshold neuron. The nonsaturated 
region is marked by the dashed box. 

For a better understanding of our penalty term one has to be aware of the fact 
that IF-THEN rules with a Boolean premise and conclusion are essentially Boolean 
functions. It can easily be shown that any such function can be calculated by a 
network of threshold neurons provided there is one (sufficiently large) hidden layer. 
This is still true if we restrict connection weights to the values {-I, 0, I} and node 
thresholds to be integers (Hertz, Krogh and Palmer, 1991). In order to transfer this 
scenario to nets with sigmoidal activation functions and having in mind that the 
activation values of the sigmoidal neurons should always exceed ±3 (see figure 1), 
we require the nodes' biases to be odd multiples of ±3 and the weights Wji to obey 

Wji E {-6,0,6}. (2) 
We shortly comment on the practical problem that sometimes bias values as large 
as ±6m, (mi being the fan-in of node i) may be necessary to implement certain 
Boolean functions. This may slow down or even block the learning process. A simple 
solution to this problem is to use some additional input units with a constant output 
of +1. If the connections to these units are also subject to the penalty function Ep, 
it is sufficient to restrict the bias values to 

hi E {-3, 3}. (3) 

2We have to point out that the conversion of sigmoidal neurons to threshold neurons 
will reduce the net's computational power: there are Boolean functions which can be 
computed by a net of sigmoidal neurons, but which exceed the capacity of a threshold 
net of the same topology (Maass, Schnitger and Sontag, 1991). Note that the objective 
to use threshold units is a consequence of the decision to search for rules of the type IF 
< premise > THEN < conclusion >. A failure of the net to simultaneously minimize 
both parts of the error measure may indicate that other rule types are more adequate to 
handle the given classification task. 



1096 Blasig 

Now we can define penalty functions that push the biases and weights to the desired 
values. Obviously Eb (the bias penalty) and Ew (the weight penalty) have to be 
different: 

Eb(bi ) = 13-lbi ll (4) 

E (w .. ) - { 16 - IWji11 for IWjil ~ e 
w J' - IWjil for IWjil < e (5) 

The parameter e determines whether a weight should be subject to decay or pushed 
to attain the value 6 (or -6 respectively). Figure 2 displays the graphs ofthe penalty 
functions. 

-3.0 3.0 -6.0 -8 8 6.0 

Figure 2: The penalty functions Eb and Ew. 

The value of e is chosen with the objective that only those weights should exceed 
this value, which almost certainly have to be nonzero to solve the given classification 
task. Since we initialize the network with weights uniformly distributed in the 
interval [-0.5,0.5]' E> = 1.5 works well at the beginning of the training process. The 
penalty term then has the effect of a pure weight decay. When learning proceeds 
and the weights converge, we can slowly reduce the value of e, because superfluous 
weights will already have decayed. So after each sequence of 100 training patterns, 
say, we decrease e by a factor of 0.995. 

Observation shows that weights which once exceeded the value of e quickly reach 
6 or -6 and that there are relatively few cases where a large weight is reduced 
again to a value smaller than e. Accordingly, the number of weights in {-6, 6} 
successively grows in the course of learning, and the criterion to stop training thus 
influences the number of nonzero weights. 

The end of training is determined by means of cross validation. However, we do 
not examine the cross validation performance of the trained net, but that of the 
corresponding rule set. This is accomplished by calculating the performance of the 
original net with all weights and biases replaced by their optimal values according 
to (2) and (3). 

The weighting factor A of the penalty term (see equation 1) is critical for good 
learning performance. We pursued the strategy to start learning with A = 0, so 
that the network parameters first move into a region where the classification error 
is small. If this error falls below a prespecified tolerance level L, A is incremented 
by 0.001. The factor A goes down by the same amount, when the error grows larger 



GDS: Gradient Descent Generation of Symbolic Classification Rules 1097 

than L3. By adjusting the weighting factor every 100 training patterns we keep the 
classification error close to the tolerance level. The choice of L of course depends on 
the learning task. As a heuristic, L should be slightly larger than the classification 
error attainable by a non-penalized network. 

3 Splice-Junction Recognition 

The DNA, carrying the genetic information of biological cells, can be thought to 
be composed of two types of subsequences: exons and introns. The task is to 
classify each DNA position as either an exon-to-intron transition (EI), an intron­
to-exon transition (IE) or neither (N). The only information available is a sequence 
of 30 nucleotides (A, C, G or T) before and 30 nucleotides after the position to be 
classified. Splice-junction recognition is a classification task that has already been 
investigated by a number of machine learning researchers using various adaptive 
models. 

The pattern reservoir contains about 3200 DNA samples, 30% of which were used for 
training, 10% for cross-validation and 60% for testing. Since we used a grandmother­
cell coding for the input DNA sequence, the network has an input layer of 4*60 
neurons. With a hidden layer of 20 neurons4 and two output units for the classes EI 
and IE, this amounts to about 5000 free parameters. The following table compares 
the classification performance of our penalty term approach and other machine 
learning algorithms, cf. (Murphy and Aha, 1992). 

Table 1: Splice-junction recognition: error (in percent) of various machine learning 
algorithms 

algorithm N EI IE total 
KBANN 4.62 7.56 8.47 6.32 
GDS 6.71 4.43 9.24 6.75 
Backprop 5.29 5.74 10.75 6.77 
Perceptron 3.99 16.32 17.41 10.43 
ID3 8.84 10.58 13.99 10.56 
Nearest Neighbor 31.11 11.65 9.09 20.74 

Surprisingly, the GDS network turned out to be very small. The weight decay 
component of our penalty term managed to push all but 61 weights to zero, making 
use of only three hidden neurons. Thus in addition to performing very well, the 
network is transformable into a concise rule set, as follows5 : 

3Negative A-values are not allowed. 
4. A reasonable size, considering the experiments described in (Shavlik et al., 1991) 
5We adopt a. notation commonly used in this domain: @n denotes the position of the 

first nucleotide in the given sequence being left (negative n) or right (positive n) to the 
point to be classified. Nucleotide 'V' stands for (,C' or 'T'), 'X' is a.ny of {A, C, G, T}. 
Consequently, e.g. neuron hidden(2) is active iff at least four of the five nucleotides of 
the sequence 'GTAXG' are identical to the input pattern at positions 1 to 5 right of the 
possible splice junction. 



1098 Blasig 

hidden(2): at least 4 nucleotides match sequence 11: 'GTAXG' 
hidden(11): at least 3 nucleotides match sequence 1-3: 'YAG' 
hidden(17): at least 1 nucleotides matches sequence 1-1: 'GG' 

class EI: hidden(2) AID hidden(11) 
class IE: IOT(hidden(2» AID hidden(17) 

4 Prediction of Interest Rates 

This is an application, where the network input is a vector of real numbers. Since 
our approach can only handle binary input, we supplement the net with a dis­
cretization layer that provides a thermometer code representation (Hancock 1988) 
of the continuous valued input. In contrast to pure Boolean learning algorithms 
(Goodman, Miller and Smyth, 1989), (Mezard and Nadal, 1989), which can also be 
endowed with discretization facilities, here the discretization process is fully inte­
grated into the learning scheme, as the discretization intervals will be adapted by 
the backpropagation algorithm. 

The data comprises a total of 226 patterns, which we distribute randomly on three 
sets: training set (60%), cross-validation set (20%) and test set (20%). The input 
represents the monthly development of 14 economic time series during the last 19 
years. The Boolean target indicates, whether the interest rates will go up or down 
during the six months succeeding the reference month6 • The time series include 
among others month of the year, income of private households or the amount of 
German foreign investments. For some time series it is useful not to take the raw 
feature measurements as input, but the difference between two succeeding measure­
ments; this is advantageous if the underlying time series show only small changes 
relative to their absolute values. All series were normalized to have values in the 
range from -1 to +1. 

We used a network containing a discretization layer of two neurons per input di­
mension. So there are 28 discretization neurons, which are fully connected to the 
10 hidden nodes. The output layer consists of a single neuron. Since our data set 
is relatively small, the intention to obtain simple rules is not only motivated by the 
objective of comprehensibility, but also by the notion that we cannot expect a large 
rule set to be justified by a small amount of training data. In fact, during training 
90% of the weights were set to zero and three hidden units proved to be sufficient for 
this task. Nevertheless the prediction error on the test set could be reduced to 25%. 
This compares to an error rate of about 20% attainable by a standard backprop­
agation network with one hidden layer of ten neurons and no input discretization. 
We thus sacrificed 5% of prediction performance to yield a very compact net, that 
can be easily transformed into a set of rules. Some of the generated rules are shown 
below. The first rule e.g. states that interest rates will rise if private income in­
creases AND foreign investments decrease by a certain amount during the reference 
month. 

If the rules produce contradicting predictions for a given input, the final decision 
will be made according to a majority vote. A tie is broken by the bias value of the 

61.e. the month where the input data has been measured. 



GDS: Gradient Descent Generation of Symbolic Classification Rules 1099 

output unit, which states that by default interest rates will rise. 

IF (at least 2 ot { increase ot private income < 0.73%, 
decrease ot toreign investments < 64 MID DM }) 

THE! (interest rates will rise) 
ELSE (interest rates will fall). 

IF (at least 3 ot { increase of business climate estimate < 1.76%, 
treasury bonds yields (11 month ago) > 7.36%, 
treasury bonds yields (12 month ago) > 8.2%, 
increase ot foreign investments < 60 MID DM }) 

THE! (interest rates will tall) 
ELSE (interest rates will rise). 

5 Conclusion and Future Work 

G DS is a learning algorithm that utilizes a penalty term in order to prepare a 
backpropagation network for rule extraction. The term is designed to have two 
effects on the network's weights: 

• By a weight decay component, the number of nonzero weights is reduced: 
thus we get a net that can hopefully be transformed into a concise and 
comprehensible rule set . 

• The penalty term encourages weight constellations that keep the node ac­
tivations out of the nonsaturated part of the activation function. This 
is motivated by the fact that rules of the type IF < premise > THEN 
< conclusion > can only mimic the behavior of threshold units. 

The important point is that our penalty function adapts the net to the expressive 
power of the type of rules we wish to obtain. Consequently, we are able to transform 
the network into an equivalent rule set. The applicability of GDS was demonstrated 
on two tasks: splice-junction recognition and the prediction of German interest 
rates. In both cases the generated rules not only showed a generalization perfor­
mance close to or even superior to what can be attained by other machine learning 
approaches such as MLPs or ID3. The rules also prove to be very concise and 
comprehensible. This is even more remarkable, since both applications represent 
real-world tasks with a large number of inputs. 

Clearly the applied penalty terms impose severe restrictions on the network param­
eters: besides minimizing the number of nonzero weights, the weights are restricted 
to a small set of distinct values. Last but not least, the simplification of sigmoidal to 
threshold units also affects the net's computational power. There are applications, 
where such a strong bias may negatively influence the net's learning capabilities. 
Furthermore our current approach is only applicable to tasks with binary target 
patterns. These limitations can be overcome by dealing with more general rules 
than those of the Boolean IF-THEN type. Future work will go into this direction. 



1100 Blasig 

Acknowledgements 

I wish to thank Hans-Georg Zimmermann and Ferdinand Hergert for many useful 
discussions and for providing the data on interest rates, and Patrick Murphy and 
David Aha for providing the UCI Repository of ML databases. This work was 
supported by a grant of the Siemens AG, Munich. 

References 

L. Bochereau, P. Bourgine. (1990) Extraction of Semantic Features and Logical 
Rules from a Multilayer Neural Network. Proceedings of the 1990 IJCNN - Wash­
ington DC, Vol.II 579-582. 

R.M. Goodman, J .W. Miller, P. Smyth. (1989) An Information Theoretic Approach 
to Rule-Based Connectionist Expert Systems. Advances in Neural Information 
Processing Systems 1, 256-263. San Mateo, CA: Morgan Kaufmann. 

P.J .B. Hancock. (1988) Data Representation in Neural Nets: an Empirical Study. 
Proc. Connectionist Summer School. 

Y. Hayashi. (1991) A Neural Expert System with Automated Extraction of Fuzzy 
If-Then Rules and its Application to Medical Diagnosis. Advances in Neural Infor­
mation Processing Systems 3, 578-584. San Mateo, CA: Morgan Kaufmann. 

J. Hertz, A. Krogh, R.G. Palmer. (1991) Introduction to the Theory of Neural 
Computation. Addison-Wesley. 

C.M. Higgins, R.M. Goodman. (1991) Incremental Learning with Rule-Based Neu­
ral Networks. Proceedings of the 1991 IEEE INNS International Joint Conference 
on Neural Networks - Seattle, Vol.1 875-880. 

M. Mezard, J .-P. Nadal. (1989) Learning in Feedforward Layered Networks: The 
Tiling Algorithm. J. Phys. A: Math. Gen. 22, 2191-2203. 

W. Maass, G. Schnitger, E.D. Sontag. (1991) On the Computational Power of 
Sigmoids versus Boolean Threshold Circuits. Proceedings of the 32nd Annual IEEE 
Symposium on Foundations of Computer Science, 767-776. 

P.M. Murphy, D.W. Aha. (1992). UCI Repository of machine learning databases 
[ftp-site: ics.uci.edu: pub/machine-Iearning-databases]. Irvine, CA: University of 
California, Department of Information and Computer Science. 

J .R. Quinlan. (1986) Induction of Decision Trees. Machine Learning, 1: 81-106. 

K. Siato, R. Nakano. (1988) Medical diagnostic expert systems based on PDP 
model. Proc. IEEE International Conference on Neural Networks Vol. I 255-262. 

V. Tresp, J. Hollatz, S. Ahmad. (1993) Network Structuring and Training Using 
Rule-Based Knowledge. Advances in Neural Information Processing Systems 5, 
871-878. San Mateo, CA: Morgan Kaufman. 

G.G. Towell, J.W. Shavlik. (1991) Training Knowledge-Based Neural Networks 
to Recognize Genes in DNA Sequences. In: Lippmann, Moody, Touretzky (eds.), 
Advances in Neural Information Processing Systems 3, 530-536. San Mateo, CA: 
Morgan Kaufmann. 


