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Abstract 

In order to best understand a visual system one should attempt 
to characterize the natural images it processes. We gather images 
from the woods and find that these scenes possess an ensemble scale 
invariance. Further, they are highly non-Gaussian, and this non­
Gaussian character cannot be removed through local linear filter­
ing. We find that including a simple "gain control" nonlinearity in 
the filtering process makes the filter output quite Gaussian, mean­
ing information is maximized at fixed channel variance. Finally, we 
use the measured power spectrum to place an upper bound on the 
information conveyed about natural scenes by an array of receptors. 

1 Introduction 

Natural stimuli are playing an increasingly important role in our understanding of 
sensory processing. This is because a sensory system's ability to perform a task is a 
statistical quantity which depends on the signal and noise characteristics. Recently 
several approaches have explored visual processing as it relates to natural images 
(Atick & Redlich '90, Bialek et al '91, van Hateren '92, Laughlin '81, Srinivasan 
et al '82) . However, a good characterization of natural scenes is sorely lacking. In 
this paper we analyze images from the woods in an effort to close this gap. We 
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further attempt to understand how a biological visual system should best encode 
these images. 

2 The Images 

Our images consist of 256 x 256 pixels 1(x) which are calibrated against luminance 
(see Appendix). We define the image contrast logarithmically as 

cf;(x) = In(I(x)/10), 

where 10 is a reference intensity defined for each image. We choose this constant 
such that Ex cf;(x) = 0; that is, the average contrast for each image is zero. Our 
analysis is of the contrast data cf;( x). 

3 Scaling 

Recent measurements (Field '87, Burton & Moorhead '87) suggest that ensembles 
of natural scenes are scale-invariant. This means that and any quantity defined on 
a given scale has statistics which are invariant to any change in that scale. This 
seems sensible in light of the fact that the images are composed of objects at all 
distances, and so no particular angular scale should stand out. (Note that this does 
not imply that any particular image is fractal! Rather, the ensemble of scenes has 
statistics which are invariant to scale.) 

3.1 Distribution of Contrasts 

We can test this scaling hypothesis directly by seeing how the statistics of various 
quantities change with scale. We define the contrast averaged over a box of size 
N x N (pixels) to be 

N 

cf;N = ~2 L cf;( i, j). 
i,j=l 

We now ask: "How does the probability P( cf;N) change with N?" 

In the left graph of figure 1 we plot log(P( cf;N / cf;~MS)) for N = 1,2,4,8,16,32 along 
with the parabola corresponding to a Gaussian of the same variance. By dividing 
out the RMS value we simply plot all the graphs on the same contrast scale. The 
graphs all lie atop one another, which means the contrast scales-the distribution's 
shape is invariant to a change in angular scale. Note that the probability is far from 
Gaussian, as the graphs have linear, and not parabolic, tails. Even after averaging 
nearly 1000 pixels (in the case of 32x32), it remains non-Gaussian. This breakdown 
of the central limit theorem implies that the pixels are correlated over very long 
distances. This is analogous to the physics of a thermodynamic system at a critical 
point. 

3.2 Distribution of Gradients 

As another example of scaling, we consider the probability distribution of image 
gradients. We define the magnitude of the gradient by a discrete approximation 
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Figure 1: Left: Semi-log plot of P(</JN/(VJMS ) for N 1,2,4,8,16,32 with a 
Gaussia~ of the same variance for comparison (solid line). Right: Semi-log plot of 
P(GN/GN) for same set of N's with a Rayleigh distribution for comparison (solid 
line) . 

such that 
G(x) = IG(x)1 ~ 1 'V</J (x) I· 

We examine this quantity over different scales by first rescaling the images as above 
and then evaluating the gradient at the new scale. We plot log( P( G N / G N )) for N = 
1,2,4,8,16,32 in the right graph of figure 1, along with the Rayleigh distribution, 
P ~ G exp( -aG2 ). If the images had Gaussian statistics, local gradients would be 
Rayleigh distributed. Note once again scaling of the distribution. 

3.3 Power Spectrum 

Scaling can also be demonstrated at the level of the power spectrum. If the ensemble 
is scale-invariant, then the spectrum should be of the form 

A 
S(k) = k2-'7' 

where k is measured in cycles/degree, and S is the power spectrum averaged over 
orientations. 

The spectrum is shown in figure 2 on log-log axes. It displays overlapping data from 
the two focal lengths, and shows that the spectrum scales over about 2.5 decades in 
spatial frequency. We determine the parameters as A = (6.47±0.13) x 1O-3deg.(O.19) 
and 1J = 0.19 ± 0.01. The integrated power spectrum up to 60 cycles/degree (the 
human resolution limit) gives an RMS contrast of about 30%. 

4 Local Filtering 

The early stages of vision consist of neurons which respond to local patches of 
images. What do the statistics of these local processing units look like? We convolve 
images with the filter shown in the left of figure 3, and plot the histogram of its 
output on a semi-log scale on the right of the figure. 
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Figure 2: Power spectrum of the contrast of natural scenes (log-log plot). 

The distribution is quite exponential over nearly 4 decades in probability. In fact, 
almost any local linear filter which passes no DC has this property, including center­
surround receptive fields. Information theory tells us that it is best to send signals 
with Gaussian statistics down channels which have power constraints. It is of in­
terest, then, to find some type of filtering which transforms the exponential distri­
butions we find into Gaussian quantities. 

Music, as it turns out, has some similar properties. An amplitude histogram from 5 
minutes of "The Blue Danube" is shown on the left of figure 4. It is almost precisely 
exponential over 4 decades in probability. We can guess what causes the excesses 
over a Gaussian distribution at the peak and the tails; it's the dynamics. When 
a quiet passage is played the amplitudes lie only near zero, and create the excess 
in the peak. When the music is loud the fluctuations are large, thus creating the 
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Figure 3: Left: 2 X 2 local filter. Right: Semi-log plot of histogram of its output 
when filtering natural scenes. 
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Figure 4: Left: Semi-log histogram of "The Blue Danube" with a Gaussian for 
comparison (dashed). Right: 5 x 5 center-surround filter region. 

tails. Most importantly, these quiet and loud passages extend coherently in time; 
so to remove the peak and tails, we can simply slowly adjust a "volume knob" to 
normalize the fluctuations. The images are made of objects which have coherent 
structure over space, and a similar localized dynamic occurs. To remove it, we need 
some sort of gain control. 

To do this, we pass the images through a local filter and then normalize by the local 
standard deviation of the image (analogous to the volume of a sound passage): 

./,( ) = ¢(x) - ¢(x) 
'f/ X O'(x)' 

Here ¢(x) is the mean image contrast in the N x N region surrounding x, and O'(x) 
is the standard deviation within the same region (see the right of figure 4) . 
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Figure 5: Left: Semi-log plot of histogram of 1/J, with Gaussian for comparison 
(dashed). Right: Semi-log plot of histogram of gradients of 1/J, with Rayleigh dis­
tribution shown for comparison (dashed). 

We find that for a value N = 5 (ratio of the negative surround to the positive 
center), the histograms of 1/J are the closest to Gaussian (see the left of figure 5) . 
Further, the histogram of gradients of 1/J is very nearly Rayleigh (see the right of 
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figure 5). These are both signatures of a Gaussian distribution. Functionally, this 
"variance normalization" procedure is similar to contrast gain control found in the 
retina and LGN (Benardete et ai, '92). Could its role be in "Gaussianizing" the 
image statistics? 

5 Information in the Retina 

From the measured statistics we can place an upper bound on the amount of in­
formation an array of photo receptors conveys about natural images. We make the 
following assumptions: 

• Images are Gaussian with the measured power spectrum. This places an 
upper bound on the entropy of natural scenes, and thus an upper bound 
on the information represented. 

• The receptors sample images in a hexagonal array with diffraction-limited 
optics. There is no aliasing. 

• Noise is additive, Gaussian, white, and independent of the image. 

The output of the nth receptor is thus given by 

Yn = J d2x ¢(x) M(x - xn) + 'f/n, 

where Xn is the location of the receptor, M(x) is the point-spread function of the 
optics, and 'f/n is the noise. For diffraction-limited optics, 

M(k) ~ 1 - Ikl/kc, 
where kc is the cutoff frequency of 60 cycles/degree. 

In the limit of an infinite lattice, Fourier components are independent, and the total 
information is the sum of the information in each component: 

+= Ac fkCdkklog[1+A1 2 IM (k)1 2S(k)]. 
47J" Jo cu 

Here I is the information per receptor, Ac is the area of the unit cell in the lattice, 
and u 2 is the variance of the noise. 

We take S(k) = A/k2- fJ , with A and 'f/ taking their measured values, and express 
the noise level in terms of the signal-to-noise ratio in the receptor. In figure 6 we 
plot the information per receptor as a function of SN R along with the information 
capacity (per receptor) of the photoreceptor lattice at that SN R, which is 

1 
C = 2 log [1 + S N R] . 

The information conveyed is less than 2 bits per receptor per image, even at SN R = 
1000. The redundancy of this representation is quite high, as seen by the gap 
between the curves; at least as much of the information capacity is being wasted as 
is being used . 
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Figure 6: Information per receptor per image (in bits) as a function of 10g(SN R) 
(lower line). Information capacity per receptor ( upper line). 

6 Conclusions 

We have shown that images from the forest have scale-invariant, highly non­
Gaussian statistics. This is evidenced by the scaling of the non-Gaussian histograms 
and the power-law form of the power spectrum. Local linear filtering produces val­
ues with quite exponential probability distributions. In order to "Gaussianize," we 
must use a nonlinear filter which acts as a gain control. This is analogous to contrast 
gain control, which is seen in the mammalian retina. Finally, an array of receptors 
which encodes these natural images only conveys at most a few bits per receptor 
per image of information, even at high SN R. At an image rate of 50 per second, 
this places an information requirement of less than about 100 bits per second on a 
foveal ganglion cell. 

Appendix 

Snapshots were gathered using a Sony Mavica MVC-5500 still video camera 
equipped with a 9.5-123.5mm zoom lens. The red, green, and blue signals were 
combined according to the standard CIE formula Y = 0.59 G + 0.30 R + 0.11 B 
to produce a grayscale value at each pixel. The quantity Y was calibrated against 
incident luminance to produce the image intensity I(x). The images were cropped 
to the central 256 x 256 region. 

The dataset consists of 45 images taken at a 15mm focal length (images subtend 
150 of visual angle) and 25 images at an 80mm focal length (30 of visual angle) . All 
images were of distant objects to avoid problems of focus. Images were chosen by 
placing the camera at a random point along a path and rotating the field of view 
until no nearby objects appeared in the frame. The camera was tilted by less than 
100 up or down in an effort to avoid sky and ground. The forested environment 
(woods in New Jersey in springtime) consisted mainly of trees, rocks, hillside, and 
a stream. 
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