
Efficient Computation of Complex
Distance Metrics Using Hierarchical

Filtering

Patrice Y. Simard
AT&T Bell Laboratories

Holmdel, NJ 07733

Abstract

By their very nature, memory based algorithms such as KNN or
Parzen windows require a computationally expensive search of a
large database of prototypes. In this paper we optimize the search­
ing process for tangent distance (Simard, LeCun and Denker, 1993)
to improve speed performance. The closest prototypes are found
by recursively searching included subset.s of the database using dis­
tances of increasing complexit.y. This is done by using a hierarchy
of tangent distances (increasing the Humber of tangent. vectors from
o to its maximum) and multiresolution (using wavelets). At each
stage, a confidence level of the classification is computed. If the
confidence is high enough, the c.omputation of more complex dis­
tances is avoided. The resulting algorithm applied to character
recognition is close to t.hree orders of magnitude faster than com­
puting the full tangent dist.ance on every prot.ot.ypes .

1 INTRODUCTION

Memory based algorithms such as KNN or Parzen windows have been extensively
used in pattern recognition. (See (Dasal'athy, 1991) for a survey.) Unfortunately,
these algorithms often rely 011 simple distances (such a<; Euclidean distance, Ham­
ming distance, etc.). As a result, t.hey suffer from high sensitivity to simple trans­
formations of the input patterns that should leave the classification unchanged (e.g.
translation or scaling for 2D images). To make the problem worse, these algorithms

168

Efficient Computation of Complex Distance Metrics Using Hierarchical Filtering 169

are further limited by extensive computational requirements due to the large number
of distance computations. (If no optimization technique is used, the computational
cost is given in equation 1.)

computational cost ~
number of
prototypes x dist.ance

complexity (1)

Recently, the problem of transformation sensitivity has been addressed by the intro­
duction of a locally transformation-invariant metric, the tangent distance (Simard,
LeCun and Denker, 1993). The basic idea is that instead of measuring the distance
d(A, B) between two patterns A and B, their respective sets of transformations TA
and TB are approximated to the first order, and the distance between these two
approximated sets is computed. Unfortunately, the tangent distance becomes com­
putationally more expensive as more transformations are taken into consideration,
which results in even stronger speed requirements.

The good news is that memory based algorithms are well suited for optimization
using hierarchies of prototypes, and that this is even more true when the distance
complexity is high. In this paper, we applied these ideas to tangent distance in two
ways: 1) Finding the closest prototype can be done by recursively searching included
subsets of the database using distances of increasing complexity. This is done by
using a hierarchy of tangent distances (increasing the number of tangent vectors
from 0 to its maximum) and l11ultiresolution (using wavelets). 2) A confidence level
can be computed fm each distance. If the confidence in the classification is above a
threshold early on, there is no need to compute the more expensive distances. The
two methods are described in the next section. Their application on a real world
problem will be shown in the result section.

2 FILTERING USING A HIERARCHY OF DISTANCES

Our goal is to compute the distance from one unknown pattern to every prototype
in a large database in order to determine which one is the closest. It is fairly obvious
that some patterns are so different from each other that a very crude approximation
of our distance can tell us so. There is a wide range of variation in computation time
(and performance) depending on the choice of the distance. For instance, computing
the Euclidean distance on n-pixel images is a factor 11/ k of the computation of
computing it on k-pixels images.

Similarly, at a given resolution, computing the tangent distance with 111 tangent
vectors is (m + 1)2 times as expensive as computing the Euclidean distance (m = °
tangent vectors).

This observations provided us wit.h a hierarchy of about a dozen different distances
ranging in computation time from 4 multiply/adds (Euclidean distance on a 2 x 2
averaged image) to 20,000 multiply /adds (tangent distance, 7 tangent vectors, 16 x
16 pixel images). The resulting filtering algorithm is very straightforward and is
exemplified in Figure 1.

The general idea is to store the database of prototypes several times at different
resolutions and with different tangent. vectors. Each of these resolutions and groups
of tangent vectors defines a distance di . These distances are ordered in increasing

170 Simard

(
Proto types Euc. Dist

~ 2x2
10~OOO

Cost: 4

~
Confidence

Unknown Pattern

Euc. Dist
~ 4x4 ~ {soc soo

Cost: 16

~
Confidence

Tang.Dist Category
14 vectors

t----t~

16x16

Confidence

Figure 1: Pattern recognition using a hierarchy of distance. The filter proceed
from left (starting with the whole database) to right (where only a few prototypes
remain). At each stage distances between prototypes and the unknown pattern are
computed, sorted and the best candidate prototypes are selected for the next stage.
As the complexity of the distance increases, the number of prototypes decreases,
making computation feasible. At each stage a classification is attempted and a
confidence score is computed. If the confidence score is high enough, the remaining
stages are skipped .

accuracy and complexity. The first distance dl is computed on all (1\0) prototypes
of the database. The closest J\ 1 pat.terns are then selected and identified to the
next stage. This process is repeated for each of the distances; i.e. at each stage i,
the distance di is computed on each J\i-l patterns selected by the previous stage.
Of course, the idea is that as the complexity of the distance increases, the number
of patterns on which this distance must be computed decreases. At the last stage,
the most complex and accurate distance is computed on all remaining patterns to
determine the classificat.ion.

The only difficult part is to det.ermine the minimum I<i patterns selected at each
stage for which the filtering does not decrease t.he overall performance. Note that
if the last distance used is the most accurat.e distance, setting all J\j to the number
of patterns in the database will give optimal performance (at the most expensive
cost). Increasing I<i always improves the performance in the sense that it allows to
find patterns that are closer for the next distance measure d j + 1 . The simplest way
to determine I<i is by selecting a validation set and plotting t.he performance on this
validation set as a function of !\j. The opt.imal !\·i is then determined graphically.
An automatic way of computing each 1\; is currently being developed.

This method is very useful when the performance is not degraded by choosing small
J{j. In this case, the dist.ance evaluation is done using distance metrics which are
relatively inexpensive to compute. The computation cost becomes:

Efficient Computation of Complex Distance Metrics Using Hierarchical Filtering 171

computational cost ~ L number of
prototypes X

at stage i

distance
complexity
at stage i

(2)

Curves showing the performance as a function of the value of !{i will be shown in
the result section.

3 PRUNING THE SEARCH USING CONFIDENCE
SCORES

If a confidence score is computed at each stage of the distance evaluation, it is
possible for certain patterns to avoid completely computing the most expensive
distances. In the extreme case, if the Euclidean distance between two patterns is 0,
there is really no need to compute the tangent distance. A simple (and crude) way
to compute a confidence score at a given stage i, is to find the closest prototype
(for distance di) in each of the possible classes. The distance difference between the
closest class and the next closest class gives an approximation of a confidence of
this classification. A simple algorithm is then to compare at stage i the confidence
score Cip of the current unknown patt.ern p to a threshold ()j, and to stop the
classification process for this pattern as soon as Cip > ()j. The classification will
then be determined by the closest prototype at this stage. The computation time
will therefore be different depending on the pattern to be classified. Easy patterns
will be recognized very quickly while difficult. patterns will need to be compared to
some of the prototypes using the most complex distance . The total computation
cost is therefore:

computational cost ~ L number of
prototypes X

at stage i

distance
complexity X

at. stage i

probabili ty
to reach
stage i

(3)

Note that if all ()j are high, the performance is maximized but so is the cost . We
therefore wish to find the smallest value of Oi which does not degrade the perfor­
mance (increasing (Jj a.lways improves the performance). As in the previous section,
the simplest way to determine the optimal ()j is graphically with a validation set..
Example of curves representing the perfornlance as a function of ()j will be given in
the result section.

4 CHOSING A GOOD HIERARCHY, OPTIMIZATION

4.1 k-d tree

Several hierarchies of distance are possible for optimizing the search process. An
incremental nearest neighbor search algorithm based on k-d tree (Broder, 1990)
was implemented . The k-d tree structure was interesting because it can potentially
be used with tangent distance. Indeed, since the separating hyperplanes have n-1
dimension, they can be made parallel to many tangent vectors at the same time.
As much as 36 images of 256 pixels ,,,ith each 7 t.angent. vectors can be separat.ed
into two group of 18 images by Olle hyperplane which is parallel to all tangent

172 Simard

vectors. The searching algorithm is taking some knowledge of the transformation
invariance into account when it computes on which side of each hyperplane the
unknown pattern is. Of course, when a leaf is reached, the full tangent. distance
must be computed.

The problem with the k-d tree algorithm however is that in high dimensional space,
the distance from a point to a hyperplane is almost always smallel' than the distance
between any pair of points. As a result, the unknown pattern must be compared to
many prototypes to have a reasonable accuracy. The speed up factor was compa­
rable to our multiresolution approach in the case of Euclidean distance (about 10),
but we have not been able to obtain both good performance and high speedup with
the k-d tree algorithm applied to tangent distance. This algorithm was not used in
our final experiments.

4.2 Wavelets

One of the main advantages of the multiresolution approach is that it is easily
implemented with wavelet transforms (i\'1allat, 1989), and that in the wavelet space,
the tangent distance is conserved (with orthonormal wavelet bases). Furthermore,
the multiresolution decomposition is completely orthogonal to the tangent distance
decomposition. In our experiment.s, the Haar transform was used.

4.3 Hierarchy of tangent distance

Many increasingly accurate approximations can be made for the tangent distance
at a given resolution. For instance, the tangent distance can be computed by an
iterative process of alternative projections onto the tangent hyperplanes. A hierar­
chy of distances results, derived from the number of projections performed. This
hierarchy is not very good because the initial projection is already fairly expensive.
It is more desirable to have a better efficiency in the first stages since only few
patterns will be left for the latter stages.

Our most successful hierarchy consisted in adding tangent vectors one by one, on
both sides. Even though this implies solving a new linear system at each stage,
the computational cost is mainly dominated by computing dot products between
tangent vectors. These dot-products are then reused in the subsequent stages to
create larger linear systems (invol ving more tangent vectors). This hierarchy has the
advantage that the first stage is only twice as expensive, yet much more accurate,
than the Euclidean distance . Each subsequent stage brings a lot of accuracy at a
reasonable cost. (The cost inCl'eases quicker toward the lat.er stages since solving the
linear system grows with the cube of the number of tangent vector .) In addition,
the last stage is exactly the full tangent distance. As we will see in section 5 the
cost in the final stages is negligible.

Obviously, the tangent vectors can be added in different order. \Ve did not try to
find the optimal order. For character recognition application adding translations
first, followed by hyperbolic deformations, the scalings, the thickness deformations
and the rotations yielded good performance.

Efficient Computation of Complex Distance Metrics Using Hierarchical Filtering 173

z # of T.V. Reso # of prot.o (Ki) # of prod Probab # of mul/add
0 0 4 9709 1 1.00 40,000
1 0 16 3500 1 1.00 56,000
2 0 64 500 1 1.00 32,000
3 1 64 125 2 0.90 14,000
4 2 256 50 5 0.60 40,000
5 4 256 45 7 0.40 32,000
6 6 256 25 9 0.20 11,000
7 8 256 15 11 0.10 4,000
8 10 256 10 13 0.10 3,000
9 12 256 5 15 0.05 1,000

10 14 256 5 17 0.0.5 1,000

Table 1: Summary computation for the classification of 1 pattern: The first column
is the distance index, the second column indicates the number of tangent vector
(0 for the Euclidean distance), and the third column indicates the resolution in
pixels, the fourth is J{j or the number of prototypes on which the distance di must
be computed, the fifth column indicat.es the number of additional dot products
which must be computed to evaluate distance di, the sixth column indicates the
probability to not skip that stage after the confidence score has been used, and
the last column indicates the total average number of multiply-adds which must be
performed (product of column 3 to 6) at each stage.

4.4 Selecting the k closests out of N prototypes in O(N)

In the multiresolution filter, at the early stages we must select the k closest proto­
types from a large number of protot.ypes. This is problematic because the prototypes
cannot be sorted since O(N ZagN) is expensive compared to computing N distances
at very low resolution (like 4 pixels). A simple solution consist.s in using a variation
of "quicksort" or "finding the k-t.h element" (Aho, Hopcroft and Ullman, 1983),
which can select the k closests out of N prototypes in O(N). The generic idea is
to compute the mean of the distances (an approximation is actually sufficient) and
then to split the distances

into two halves (of different sizes) according to whether they are smaller or larger
than the mean distance. If they are more dist.ances smaller than the mean than k,
the process is reiterat.ed on the upper half, ot.herwise it is reiterated on the lowel'
half. The process is recursively executed until there is only one distance in each
half. (k is then reached and all the k prototypes in the lower halves are closer to
the unknown pattei'll than all the N - ~~ prototypes in the upper halves.) Note that.
the elements are not sorted and t.hat only t.he expected t.ime is O(N), but this is
sufficient for our problem.

5 RESULTS

A simple task of pattern classification was used to test the filtering. The prototype
set and the test set consisted l'especti vely of 9709 and 2007 labeled images (16
by 16 pixels) of handwritten digit.s. The prot.otypes were also averaged t.o lower

174 Simard

5

Error in %

4

Resol ution 16 pixels

3

K (in 1000)

8

71
Error in % t

6

5

4

3

/ Resolution 16 pIXels

ResolutIOn 64 pixels

Reso lutlO n 64 pixels
1 tangent veC10r

2~~~~~~ __ ~ __ ~~~~
o 10 20 30 40 50 60 70 80 90 100

% of pat. kept.

Figure 2: Left: Raw error performance as a function of Kl and 1\2. The final
chosen values were J{ 1 = 3500 and [\'2 = 500. Right: Raw error as a function of
the percentage of pattern which have not exceeded the confidence threshold Oi. A
100% means all the pattern were passed to the next stage.

resolutions (2 by 2, 4 by 4 and 8 by 8) and copied to separate databases . The 1
by 1 resolution was not useful for anything. Therefore the fastest distance was the
Euclidean distance on 2 by 2 images, while the slowest distance was the full tangent
distance with 7 tangent vectors for both the prototype and the unknown pattern
(Simard, LeCun and Denker, 1993). Table 1 summarizes the results.

Several observations can be made. First, simple distance metrics are very useful to
eliminate large proportions of Pl"Ototypes at no cost in performances. Indeed the
Euclidean distance computed on 2 by 2 images can remove 2 third of the prototypes.
Figure 2, left, shows the performance as a function of J{l and 1\2 (2 .5 % raw error
was considered optimal performance). It can be noticed that for J{j above a certain
value, the performance is optimal alld c.onstant. The most complex distances (6 and
7 tangent vectors on each side) need only be computed for 5% of the prototypes.

The second observation is that the use of a confidence score can greatly reduce the
number of distance evaluations in later stages. For instance the dominant phases of
the computation would be with 2, 4 and 6 tangent vectors at resolution 256 if there
were not reduced to 60%, 40% and 20% respectively using the confidence sc.ores.
Figure 2, right, shows the raw error performance as a function of the percentage
of rejection (confidence lower than OJ) at stage i. It can be noticed that above a
certain threshold, the performance are optimal and constant . Less than 10% of the
unknown patterns need the most. complex distances (5, 6 and 7 tangent vectors on
each side), to be comput.ed.

Efficient Computation of Complex Distance Metrics Using Hierarchical Filtering 175

6 DISCUSSION

Even though our method is by no way optimal (the order of the tangent vector
can be changed, intermediate resolution can be used, etc ...), the overall speed up
we achieved was about 3 orders of magnitude (compared with computing the full
tangent distance on all the patterns). There was no significant decrease in perfor­
mances. This classification speed is comparable with neural network method, but
the performance are better with tangent distance (2.5% versus 3%). Furthermore
the above methods require no learning period which makes them very attractive for
application were the distribution of the patterns to be classified is changing rapidly.

The hierarchical filtering can also be combined with learning the prototypes using
algorithms such as learning vector quantization (LVQ).

References

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1983). Data Structure and Algo­
rithms. Addison- \V'esley.

Broder, A. J. (1990). Strategies for Efficient Incremental Nearest Neighbor Search.
Pattern Recognition, 23: 171-178.

Dasarathy, B. V. (1991). Nearest Neighbor (NN) Norms: NN Pattern classification
Techniques. IEEE Computer Society Press, Los Alamitos, California.

Mallat, S. G. (1989). A Theory for I\,Iultiresolution Signal Decomposition: The
Wavelet Representation. IEEE Transactions 011 Pattern Analysis and Machine
Intelligence, 11, No. 7:674-693.

Simard, P. Y., LeCun, Y., and Denker, J. (1993). Efficient Pattern Recognition
Using a New Transformation Distance. In Neural Information Processing Sys­
tems, volume 4, pages 50-58, Sa.n Mateo, CA.

