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Abstract 

By their very nature, memory based algorithms such as KNN or 
Parzen windows require a computationally expensive search of a 
large database of prototypes. In this paper we optimize the search­
ing process for tangent distance (Simard, LeCun and Denker, 1993) 
to improve speed performance. The closest prototypes are found 
by recursively searching included subset.s of the database using dis­
tances of increasing complexit.y. This is done by using a hierarchy 
of tangent distances (increasing the Humber of tangent. vectors from 
o to its maximum) and multiresolution (using wavelets). At each 
stage, a confidence level of the classification is computed. If the 
confidence is high enough, the c.omputation of more complex dis­
tances is avoided. The resulting algorithm applied to character 
recognition is close to t.hree orders of magnitude faster than com­
puting the full tangent dist.ance on every prot.ot.ypes . 

1 INTRODUCTION 

Memory based algorithms such as KNN or Parzen windows have been extensively 
used in pattern recognition. (See (Dasal'athy, 1991) for a survey.) Unfortunately, 
these algorithms often rely 011 simple distances (such a<; Euclidean distance, Ham­
ming distance, etc.). As a result, t.hey suffer from high sensitivity to simple trans­
formations of the input patterns that should leave the classification unchanged (e.g. 
translation or scaling for 2D images). To make the problem worse, these algorithms 
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are further limited by extensive computational requirements due to the large number 
of distance computations. (If no optimization technique is used, the computational 
cost is given in equation 1.) 

computational cost ~ 
number of 
prototypes x dist.ance 

complexity (1) 

Recently, the problem of transformation sensitivity has been addressed by the intro­
duction of a locally transformation-invariant metric, the tangent distance (Simard, 
LeCun and Denker, 1993). The basic idea is that instead of measuring the distance 
d(A, B) between two patterns A and B, their respective sets of transformations TA 
and TB are approximated to the first order, and the distance between these two 
approximated sets is computed. Unfortunately, the tangent distance becomes com­
putationally more expensive as more transformations are taken into consideration, 
which results in even stronger speed requirements. 

The good news is that memory based algorithms are well suited for optimization 
using hierarchies of prototypes, and that this is even more true when the distance 
complexity is high. In this paper, we applied these ideas to tangent distance in two 
ways: 1) Finding the closest prototype can be done by recursively searching included 
subsets of the database using distances of increasing complexity. This is done by 
using a hierarchy of tangent distances (increasing the number of tangent vectors 
from 0 to its maximum) and l11ultiresolution (using wavelets). 2) A confidence level 
can be computed fm each distance. If the confidence in the classification is above a 
threshold early on, there is no need to compute the more expensive distances. The 
two methods are described in the next section. Their application on a real world 
problem will be shown in the result section. 

2 FILTERING USING A HIERARCHY OF DISTANCES 

Our goal is to compute the distance from one unknown pattern to every prototype 
in a large database in order to determine which one is the closest. It is fairly obvious 
that some patterns are so different from each other that a very crude approximation 
of our distance can tell us so. There is a wide range of variation in computation time 
(and performance) depending on the choice of the distance. For instance, computing 
the Euclidean distance on n-pixel images is a factor 11/ k of the computation of 
computing it on k-pixels images. 

Similarly, at a given resolution, computing the tangent distance with 111 tangent 
vectors is (m + 1)2 times as expensive as computing the Euclidean distance (m = ° 
tangent vectors). 

This observations provided us wit.h a hierarchy of about a dozen different distances 
ranging in computation time from 4 multiply/adds (Euclidean distance on a 2 x 2 
averaged image) to 20,000 multiply /adds (tangent distance, 7 tangent vectors, 16 x 
16 pixel images). The resulting filtering algorithm is very straightforward and is 
exemplified in Figure 1. 

The general idea is to store the database of prototypes several times at different 
resolutions and with different tangent. vectors. Each of these resolutions and groups 
of tangent vectors defines a distance di . These distances are ordered in increasing 
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Figure 1: Pattern recognition using a hierarchy of distance. The filter proceed 
from left (starting with the whole database) to right (where only a few prototypes 
remain). At each stage distances between prototypes and the unknown pattern are 
computed, sorted and the best candidate prototypes are selected for the next stage. 
As the complexity of the distance increases, the number of prototypes decreases, 
making computation feasible. At each stage a classification is attempted and a 
confidence score is computed. If the confidence score is high enough, the remaining 
stages are skipped . 

accuracy and complexity. The first distance dl is computed on all (1\0) prototypes 
of the database. The closest J\ 1 pat.terns are then selected and identified to the 
next stage. This process is repeated for each of the distances; i.e. at each stage i, 
the distance di is computed on each J\i-l patterns selected by the previous stage. 
Of course, the idea is that as the complexity of the distance increases, the number 
of patterns on which this distance must be computed decreases. At the last stage, 
the most complex and accurate distance is computed on all remaining patterns to 
determine the classificat.ion. 

The only difficult part is to det.ermine the minimum I<i patterns selected at each 
stage for which the filtering does not decrease t.he overall performance. Note that 
if the last distance used is the most accurat.e distance, setting all J\j to the number 
of patterns in the database will give optimal performance (at the most expensive 
cost). Increasing I<i always improves the performance in the sense that it allows to 
find patterns that are closer for the next distance measure d j + 1 . The simplest way 
to determine I<i is by selecting a validation set and plotting t.he performance on this 
validation set as a function of !\j. The opt.imal !\·i is then determined graphically. 
An automatic way of computing each 1\; is currently being developed. 

This method is very useful when the performance is not degraded by choosing small 
J{j. In this case, the dist.ance evaluation is done using distance metrics which are 
relatively inexpensive to compute. The computation cost becomes: 
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computational cost ~ L number of 
prototypes X 

at stage i 

distance 
complexity 
at stage i 

(2) 

Curves showing the performance as a function of the value of !{i will be shown in 
the result section. 

3 PRUNING THE SEARCH USING CONFIDENCE 
SCORES 

If a confidence score is computed at each stage of the distance evaluation, it is 
possible for certain patterns to avoid completely computing the most expensive 
distances. In the extreme case, if the Euclidean distance between two patterns is 0, 
there is really no need to compute the tangent distance. A simple (and crude) way 
to compute a confidence score at a given stage i, is to find the closest prototype 
(for distance di ) in each of the possible classes. The distance difference between the 
closest class and the next closest class gives an approximation of a confidence of 
this classification. A simple algorithm is then to compare at stage i the confidence 
score Cip of the current unknown patt.ern p to a threshold ()j, and to stop the 
classification process for this pattern as soon as Cip > ()j. The classification will 
then be determined by the closest prototype at this stage. The computation time 
will therefore be different depending on the pattern to be classified. Easy patterns 
will be recognized very quickly while difficult. patterns will need to be compared to 
some of the prototypes using the most complex distance . The total computation 
cost is therefore: 

computational cost ~ L number of 
prototypes X 

at stage i 

distance 
complexity X 

at. stage i 

probabili ty 
to reach 
stage i 

(3 ) 

Note that if all ()j are high, the performance is maximized but so is the cost . We 
therefore wish to find the smallest value of Oi which does not degrade the perfor­
mance (increasing (Jj a.lways improves the performance). As in the previous section, 
the simplest way to determine the optimal ()j is graphically with a validation set.. 
Example of curves representing the perfornlance as a function of ()j will be given in 
the result section. 

4 CHOSING A GOOD HIERARCHY, OPTIMIZATION 

4.1 k-d tree 

Several hierarchies of distance are possible for optimizing the search process. An 
incremental nearest neighbor search algorithm based on k-d tree (Broder, 1990) 
was implemented . The k-d tree structure was interesting because it can potentially 
be used with tangent distance. Indeed, since the separating hyperplanes have n-1 
dimension, they can be made parallel to many tangent vectors at the same time. 
As much as 36 images of 256 pixels ,,,ith each 7 t.angent. vectors can be separat.ed 
into two group of 18 images by Olle hyperplane which is parallel to all tangent 
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vectors. The searching algorithm is taking some knowledge of the transformation 
invariance into account when it computes on which side of each hyperplane the 
unknown pattern is. Of course, when a leaf is reached, the full tangent. distance 
must be computed. 

The problem with the k-d tree algorithm however is that in high dimensional space, 
the distance from a point to a hyperplane is almost always smallel' than the distance 
between any pair of points. As a result, the unknown pattern must be compared to 
many prototypes to have a reasonable accuracy. The speed up factor was compa­
rable to our multiresolution approach in the case of Euclidean distance (about 10), 
but we have not been able to obtain both good performance and high speedup with 
the k-d tree algorithm applied to tangent distance. This algorithm was not used in 
our final experiments. 

4.2 Wavelets 

One of the main advantages of the multiresolution approach is that it is easily 
implemented with wavelet transforms (i\'1allat, 1989), and that in the wavelet space, 
the tangent distance is conserved (with orthonormal wavelet bases). Furthermore, 
the multiresolution decomposition is completely orthogonal to the tangent distance 
decomposition. In our experiment.s, the Haar transform was used. 

4.3 Hierarchy of tangent distance 

Many increasingly accurate approximations can be made for the tangent distance 
at a given resolution. For instance, the tangent distance can be computed by an 
iterative process of alternative projections onto the tangent hyperplanes. A hierar­
chy of distances results, derived from the number of projections performed. This 
hierarchy is not very good because the initial projection is already fairly expensive. 
It is more desirable to have a better efficiency in the first stages since only few 
patterns will be left for the latter stages. 

Our most successful hierarchy consisted in adding tangent vectors one by one, on 
both sides. Even though this implies solving a new linear system at each stage, 
the computational cost is mainly dominated by computing dot products between 
tangent vectors. These dot-products are then reused in the subsequent stages to 
create larger linear systems (invol ving more tangent vectors). This hierarchy has the 
advantage that the first stage is only twice as expensive, yet much more accurate, 
than the Euclidean distance . Each subsequent stage brings a lot of accuracy at a 
reasonable cost. (The cost inCl'eases quicker toward the lat.er stages since solving the 
linear system grows with the cube of the number of tangent vector .) In addition, 
the last stage is exactly the full tangent distance. As we will see in section 5 the 
cost in the final stages is negligible. 

Obviously, the tangent vectors can be added in different order. \Ve did not try to 
find the optimal order. For character recognition application adding translations 
first, followed by hyperbolic deformations, the scalings, the thickness deformations 
and the rotations yielded good performance. 
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z # of T.V. Reso # of prot.o (Ki) # of prod Probab # of mul/add 
0 0 4 9709 1 1.00 40,000 
1 0 16 3500 1 1.00 56,000 
2 0 64 500 1 1.00 32,000 
3 1 64 125 2 0.90 14,000 
4 2 256 50 5 0.60 40,000 
5 4 256 45 7 0.40 32,000 
6 6 256 25 9 0.20 11,000 
7 8 256 15 11 0.10 4,000 
8 10 256 10 13 0.10 3,000 
9 12 256 5 15 0.05 1,000 

10 14 256 5 17 0.0.5 1,000 

Table 1: Summary computation for the classification of 1 pattern: The first column 
is the distance index, the second column indicates the number of tangent vector 
(0 for the Euclidean distance), and the third column indicates the resolution in 
pixels, the fourth is J{j or the number of prototypes on which the distance di must 
be computed, the fifth column indicat.es the number of additional dot products 
which must be computed to evaluate distance di, the sixth column indicates the 
probability to not skip that stage after the confidence score has been used, and 
the last column indicates the total average number of multiply-adds which must be 
performed (product of column 3 to 6) at each stage. 

4.4 Selecting the k closests out of N prototypes in O(N) 

In the multiresolution filter, at the early stages we must select the k closest proto­
types from a large number of protot.ypes. This is problematic because the prototypes 
cannot be sorted since O( N ZagN) is expensive compared to computing N distances 
at very low resolution (like 4 pixels). A simple solution consist.s in using a variation 
of "quicksort" or "finding the k-t.h element" (Aho, Hopcroft and Ullman, 1983), 
which can select the k closests out of N prototypes in O(N). The generic idea is 
to compute the mean of the distances (an approximation is actually sufficient) and 
then to split the distances 

into two halves (of different sizes) according to whether they are smaller or larger 
than the mean distance. If they are more dist.ances smaller than the mean than k, 
the process is reiterat.ed on the upper half, ot.herwise it is reiterated on the lowel' 
half. The process is recursively executed until there is only one distance in each 
half. (k is then reached and all the k prototypes in the lower halves are closer to 
the unknown pattei'll than all the N - ~~ prototypes in the upper halves.) Note that. 
the elements are not sorted and t.hat only t.he expected t.ime is O(N), but this is 
sufficient for our problem. 

5 RESULTS 

A simple task of pattern classification was used to test the filtering. The prototype 
set and the test set consisted l'especti vely of 9709 and 2007 labeled images (16 
by 16 pixels) of handwritten digit.s. The prot.otypes were also averaged t.o lower 
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Figure 2: Left: Raw error performance as a function of Kl and 1\2. The final 
chosen values were J{ 1 = 3500 and [\'2 = 500. Right: Raw error as a function of 
the percentage of pattern which have not exceeded the confidence threshold Oi. A 
100% means all the pattern were passed to the next stage. 

resolutions (2 by 2, 4 by 4 and 8 by 8) and copied to separate databases . The 1 
by 1 resolution was not useful for anything. Therefore the fastest distance was the 
Euclidean distance on 2 by 2 images, while the slowest distance was the full tangent 
distance with 7 tangent vectors for both the prototype and the unknown pattern 
(Simard, LeCun and Denker, 1993). Table 1 summarizes the results. 

Several observations can be made. First, simple distance metrics are very useful to 
eliminate large proportions of Pl"Ototypes at no cost in performances. Indeed the 
Euclidean distance computed on 2 by 2 images can remove 2 third of the prototypes. 
Figure 2, left, shows the performance as a function of J{l and 1\2 (2 .5 % raw error 
was considered optimal performance). It can be noticed that for J{j above a certain 
value, the performance is optimal alld c.onstant. The most complex distances (6 and 
7 tangent vectors on each side) need only be computed for 5% of the prototypes. 

The second observation is that the use of a confidence score can greatly reduce the 
number of distance evaluations in later stages. For instance the dominant phases of 
the computation would be with 2, 4 and 6 tangent vectors at resolution 256 if there 
were not reduced to 60%, 40% and 20% respectively using the confidence sc.ores. 
Figure 2, right, shows the raw error performance as a function of the percentage 
of rejection (confidence lower than OJ) at stage i. It can be noticed that above a 
certain threshold, the performance are optimal and constant . Less than 10% of the 
unknown patterns need the most. complex distances (5, 6 and 7 tangent vectors on 
each side), to be comput.ed. 
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6 DISCUSSION 

Even though our method is by no way optimal (the order of the tangent vector 
can be changed, intermediate resolution can be used, etc ... ), the overall speed up 
we achieved was about 3 orders of magnitude (compared with computing the full 
tangent distance on all the patterns). There was no significant decrease in perfor­
mances. This classification speed is comparable with neural network method, but 
the performance are better with tangent distance (2.5% versus 3%). Furthermore 
the above methods require no learning period which makes them very attractive for 
application were the distribution of the patterns to be classified is changing rapidly. 

The hierarchical filtering can also be combined with learning the prototypes using 
algorithms such as learning vector quantization (LVQ). 
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