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Abstract 

The Singular Value Decomposition (SVD) is an important tool for 
linear algebra and can be used to invert or approximate matrices. 
Although many authors use "SVD" synonymously with "Eigen­
vector Decomposition" or "Principal Components Transform", it 
is important to realize that these other methods apply only to 
symmetric matrices, while the SVD can be applied to arbitrary 
nonsquare matrices. This property is important for applications to 
signal transmission and control. 
I propose two new algorithms for iterative computation of the SVD 
given only sample inputs and outputs from a matrix. Although 
there currently exist many algorithms for Eigenvector Decomposi­
tion (Sanger 1989, for example), these are the first true sample­
based SVD algorithms. 

1 INTRODUCTION 

The Singular Value Decomposition (SVD) is a method for writing an arbitrary 
nons quare matrix as the product of two orthogonal matrices and a diagonal matrix. 
This technique is an important component of methods for approximating near­
singular matrices and computing pseudo-inverses. Several efficient techniques exist 
for finding the SVD of a known matrix (Golub and Van Loan 1983, for example). 
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Figure 1: Representation of the plant matrix P as a linear system mapping inputs 
u into outputs y. LT SR is the singular value decomposition of P. 

However, for certain signal processing or control tasks, we might wish to find the 
SVD of an unknown matrix for which only input-output samples are available. 
For example, if we want to model a linear transmission channel with unknown 
properties, it would be useful to be able to approximate the SVD based on samples 
of the inputs and outputs of the channel. If the channel is time-varying, an iterative 
algorithm for approximating the SVD might be able to track slow variations. 

2 THE SINGULAR VALUE DECOMPOSITION 

The SVD of a nonsymmetric matrix P is given by P = LT SR where Land Rare 
matrices with orthogonal rows containing the left and right "singular vectors" , and 
S is a diagonal matrix of "singular values". The inverse of P can be computed by 
inverting S, and approximations to P can be formed by setting the values of the 
smallest elements of S to zero. 

For a memoryless linear system with inputs u and outputs y = Pu, we can write 
y = LT SRu which shows that R gives the "input" transformation from inputs 
to internal "modes", S gives the gain of the modes, and LT gives the "output" 
transformation which determines the effect of each mode on the output. Figure 1 
shows a representation of this arrangement. 

The goal of the two algorithms presented below is to train two linear neural networks 
Nand G to find the SVD of P. In particular, the networks attempt to invert P 
by finding orthogonal matrices Nand G such that NG ~ p-1 , or P NG = I. A 
particular advantage of using the iterative algorithms described below is that it is 
possible to extract only the singular vectors associated with the largest singular 
values. Figure 2 depicts this situation, in which the matrix S is shown smaller to 
indicate a small number of significant singular values. 

There is a close relationship with algorithms that find the eigenvalues of a symmetric 
matrix, since any such algorithm can be applied to P pT = LT S2 Land pT P = 
RT S2 R in order to find the left and right singular vectors. But in a behaving animal 
or operating robotic system it is generally not possible to compute the product with 
pT, since the plant is an unknown component of the system. In the following, I will 
present two new iterative algorithms for finding the singular value decomposition 
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Figure 2: Loop structure of the singular value decomposition for control. The 
plant is P = LT SR, where R determines the mapping from control variables to 
system modes, and LT determines the outputs produced by each mode . The optimal 
sensory network is G = L, and the optimal motor network is N = RT S-l. Rand L 
are shown as trapezoids to indicate that the number of nonzero elements of S (the 
"modes") may be less than the number of sensory variables y or motor variables u. 

of a matrix P given only samples of the inputs u and outputs y. 

3 THE DOUBLE GENERALIZED HEBBIAN 
ALGORITHM 

The first algorithm is the Double Generalized Hebbian Algorithm (DGHA), and it 
is described by the two coupled difference equations 

b-.G = l(zyT - LT[zzT]G) (1) 

b-.NT = l(zuT - LT[zzT]NT) (2) 
where LT[ ] is an operator that sets the above diagonal elements of its matrix 
argument to zero, y = Pu, z = Gy, and I is a learning rate constant. 

Equation 1 is the Generalized Hebbian Algorithm (Sanger 1989) which finds the 
eigenvectors of the autocorrelation matrix of its inputs y. For random uncorrelated 
inputs u, the autocorrelation of y is E[yyT] = LT S2 L, so equation 1 will cause 
G to converge to the matrix of left singular vectors L . Equation 2 is related to 
the Widrow-Hoff (1960) LMS rule for approximating uT from z, but it enforces 
orthogonality of the columns of N. It appears similar in form to equation 1, except 
that the intermediate variables z are computed from y rather than u. A graphical 
representation of the algorithm is given in figure 3. Equations 1 and 2 together 
cause N to converge to RT S-l , so that the combination N G = RT S-l L is an 
approximation to the plant inverse. 

Theorem 1: (Sanger 1993) If y = Pu, z = Gy, and E[uuT] = I, then equations 1 
and 2 converge to the left and right singular vectors of P . 
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Figure 3: Graphic representation of the Double Generalized Hebbian Algorithm. 
G learns according to the usual G HA rule, while N learns using an orthogonalized 
form of the Widrow-Hoff LMS Rule. 

Proof: 
After convergence of equation 1, E[zzT] will be diagonal, so that E[LT[zzT]] = 
E[zzT]. Consider the Widrow-Hoff LMS rule for approximating uT from z: 

~NT = 'Y(zuT - zzT NT). (3) 
After convergence of G, this will be equivalent to equation 2, and will converge to 
the same attractor. The stable points of 3 occur when E[uzT - NzzT] = 0, for 
which N = RT 5- 1 

• 
The convergence behavior of the Double Generalized Hebbian Algorithm is shown in 
figure 4. Results are measured by computing B = GP N and determining whether 
B is diagonal using a score 

" ...... b~. L...I~) I) 

€= L 2 . b· 
1 1 

The reduction in € is shown as a function of the number of (u, y) examples given to 
the network during training, and the curves in the figure represent the average over 
100 training runs with different randomly-selected plant matrices P. 

Note that the Double Generalized Hebbian Algorithm may perform poorly in the 
presence of noise or uncontrollable modes. The sensory mapping G depends only on 
the outputs y, and not directly on the plant inputs u. So if the outputs include noise 
or autonomously varying uncontrollable modes, then the mapping G will respond 
to these modes. This is not a problem if most of the variance in the output is due 
the inputs u, since in that case the most significant output components will reflect 
the input variance transmitted through P. 

4 THE ORTHOGONAL ASYMMETRIC ENCODER 

The second algorithm is the Orthogonal Asymmetric Encoder (OAE) which is de­
scribed by the equations 

(4) 
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Figure 4: Convergence of the Double Generalized Hebbian Algorithm averaged over 
100 random choices of 3x3 or 10xlO matrices P. 

(5) 

where z = NT u. 

This algorithm uses a variant of the Backpropagation learning algorithm (Rumelhart 
et al. 1986). It is named for the "Encoder" problem in which a three-layer network is 
trained to approximate the identity mapping but is forced to use a narrow bottleneck 
layer. I define the "Asymmetric Encoder Problem" as the case in which a mapping 
other than the identity is to be learned while the data is passed through a bottleneck. 
The "Orthogonal Asymmetric Encoder" (OAE) is the special case in which the 
hidden units are forced to be uncorrelated over the data set. Figure 5 gives a 
graphical depiction of the algorithm. 

Theorem 2: (Sanger 1993) Equations 4 and 5 converge to the left and right singular 
vectors of P. 

Proof: 

Suppose z has dimension m. If P = LT SR where the elements of S are distinct, 
and E[uuT ] = I, then a well-known property of the singular value decomposition 
(Golub and Van Loan 1983, , for example) shows that 

E[IIPu - CT NT ullJ (6) 

is minimized when CT = LrnU, NT = V Rm , and U and V are any m x m matrices 
for which UV = 1mS/;;". (L~ and Rm signify the matrices of only the first m 
columns of LT or rows of R.) If we want E[zzT] to be diagonal, then U and V must 
be diagonal. OAE accomplishes this by training the first hidden unit as if m = 1, 
the second as if m = 2, and so on. 

For the case m = 1, the error 6 is minimized when C is the first left singular vector 
of P and N is the first right singular vector. Since this is a linear approximation 
problem, there is a single global minimum to the error surface 6, and gradient 
descent using the backpropagation algorithm will converge to this solution. 
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Figure 5: The Orthogonal Asymmetric Encoder algorithm computes a forward ap­
proximation to the plant P through a bottleneck layer of hidden units. 

After convergence, the remaining error is E[II(P - GT N T )ull1. If we decompose the 
plant matrix as 

i=l 

where Ii and ri are the rows of Land R, and Si are the diagonal elements of S, then 
the remaining error is 

n 

P2 = LlisirT 
i=2 

which is equivalent to the original plant matrix with the first singular value set to 
zero. If we train the second hidden unit using P2 instead of P, then minimization of 
E[IIP2 u - GT NT ull1 will yield the second left and right singular vectors. Proceeding 
in this way we can obtain the first m singular vectors. 

Combining the update rules for all the singular vectors so that they learn in parallel 
leads to the governing equations of the OAE algorithm which can be written in 
matrix form as equations 4 and 5 . 

• 
(Bannour and Azimi-Sadjadi 1993) proposed a similar technique for the symmet­
ric encoder problem in which each eigenvector is learned to convergence and then 
subtracted from the data before learning the succeeding one. The orthogonal asym­
metric encoder is different because all the components learn simultaneously. After 
convergence, we must multiply the learned N by S-2 in order to compute the plant 
inverse. Figure 6 shows the performance of the algorithm averaged over 100 random 
choices of matrix P. 

Consider the case in which there may be noise in the measured outputs y. Since 
the Orthogonal Asymmetric Encoder algorithm learns to approximate the forward 
plant transformation from u to y, it will only be able to predict the components of 
y which are related to the inputs u. In other words, the best approximation to y 
based on u is if ~ Pu, and this ignores the noise term. Figure 7 shows the results 
of additive noise with an SNR of 1.0. 
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Figure 6: Convergence of the Orthogonal Asymmetric Encoder averaged over 100 
random choices of 3x3 or 10xlO matrices P. 
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Figure 7: Convergence of the Orthogonal Asymmetric Encoder with 50% additive 
noise on the outputs, averaged over 100 random choices of 3x3 or 10xlO matrices 
P. 


