
Globally Trained Handwritten Word 
Recognizer using Spatial Representation, 

Convolutional Neural Networks and 
Hidden Markov Models 

Yoshua Bengio ... 
Dept. Informatique et Recherche Operationnelle 

Universite de Montreal 
Montreal, Qc H3C-3J7 

Donnie Henderson 
AT&T Bell Labs 

Holmdel NJ 07733 

Abstract 

Yann Le Cun 
AT&T Bell Labs 

Holmdel NJ 07733 

We introduce a new approach for on-line recognition of handwrit­
ten words written in unconstrained mixed style. The preprocessor 
performs a word-level normalization by fitting a model of the word 
structure using the EM algorithm. Words are then coded into low 
resolution "annotated images" where each pixel contains informa­
tion about trajectory direction and curvature. The recognizer is a 
convolution network which can be spatially replicated. From the 
network output, a hidden Markov model produces word scores. The 
entire system is globally trained to minimize word-level errors. 

1 Introduction 

Natural handwriting is often a mixture of different "styles", lower case printed, 
upper case, and cursive. A reliable recognizer for such handwriting would greatly 
improve interaction with pen-based devices, but its implementation presents new 
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technical challenges. Characters taken in isolation can be very ambiguous, but con­
siderable information is available from the context of the whole word. We propose 
a word recognition system for pen-based devices based on four main modules: a 
preprocessor that normalizes a word, or word group, by fitting a geometrical model 
to the word structure using the EM algorithm; a module that produces an "anno­
tated image" from the normalized pen trajectory; a replicated convolutional neural 
network that spots and recognizes characters; and a Hidden Markov Model (HMM) 
that interprets the networks output by taking word-level constraints into account. 
The network and the HMM are jointly trained to minimize an error measure defined 
at the word level. 

Many on-line handwriting recognizers exploit the sequential nature of pen trajec­
tories by representing the input in the time domain. While these representations 
are compact and computationally advantageous, they tend to be sensitive to stroke 
order, writing speed, and other irrelevant parameters. In addition, global geometric 
features, such as whether a stroke crosses another stroke drawn at a different time, 
are not readily available in temporal representations. To avoid this problem we 
designed a representation, called AMAP, that preserves the pictorial nature of the 
handwriting. 

In addition to recognizing characters, the system must also correctly segment the 
characters within the words. One approach, that we call INSEG, is to recognize 
a large number of heuristically segmented candidate characters and combine them 
optimally with a postprocessor (Burges et al 92, Schenkel et al 93). Another ap­
proach, that we call OUTSEG, is to delay all segmentation decisions until after the 
recognition, as is often done in speech recognition. An OUTSEG recognizer must 
accept entire words as input and produce a sequence of scores for each character at 
each location on the input. Since the word normalization cannot be done perfectly, 
the recognizer must be robust with respect to relatively large distortions, size vari­
ations, and translations. An elastic word model -e.g., an HMM- can extract word 
candidates from the network output. The HMM models the long-range sequential 
structure while the neural network spots and classifies characters, using local spatial 
structure. 

2 Word Normalization 

Input normalization reduces intra-character variability, simplifying character recog­
nition. This is particularly important when recognizing entire words. We propose a 
new word normalization scheme, based on fitting a geometrical model of the word 
structure. Our model has four "flexible" lines representing respectively the ascen­
ders line, the core line, the base line and the descenders line (see Figure 1). Points 
on the lines are parameterized as follows: 

y = fk(X) = k(x - XO)2 + s(x - xo) + YOk (1) 

where k controls curvature, s is the skew, and (xo,Yo) is a translation vector. The 
parameters k, s, and Xo are shared among all four curves, whereas each curve has 
its own vertical translation parameter YOk. First the set of local maxima U and 
minima L of the vertical displacement are found. Xo is determined by taking the 
average abscissa of extrema points. The lines of the model are then fitted to the 
extrema: the upper two lines to the maxima, and the lower two to the minima. 
The fit is performed using a probabilistic model for the extrema points given the 
lines. The idea is to find the line parameters 8* that maximize the probability of 
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Figure 1: Word Normalization Model: Ascenders and core curves fit y-maxima 
whereas descenders and baseline curves fit y-minima. There are 6 parameters: a 
(ascenders curve height relative to baseline), b (baseline absolute vertical position), 
c (core line position), d (descenders curve position), k (curvature), s (angle). 

generating the observed points. 

0* = argmax log P(X I 0) + log P(O) 
(J 

(2) 

The above conditional distribution is chosen to be a mixture of Gaussians (one 
per curve) whose means are the y-positions obtained from the actual x-positions 
through equation 1: 

3 

P(Xi, Yi 1 0) = log L WkN(Yi; fk(xd, (J'y) (3) 
k=O 

where N(x; J1, (J') is a univariate Normal distribution of mean J1 and standard devi­
ation (J'. The Wk are the mixture parameters, some of which are set to 0 in order to 
constrain the upper (lower) points to be fitted to the upper (lower) curves. They are 
computed a-priori using measured frequencies of associations of extrema to curves 
on a large set of words. The priors P(O) on the parameters are required to prevent 
the collapse of the curves. They can be used to incorporate a-priori information 
about the word geometry, such as the expected position of the baseline, or the 
height of the word. These priors for each parameter are chosen to be independent 
normal distributions whose standard deviations control the strength of the prior. 
The variables that associate each point with one of the curves are taken as hidden 
variables of the EM algorithm. One can thus derive an auxiliary function which can 
be analytically (and cheaply) solved for the 6 free parameters O. Convergence of 
the EM algorithm was typically obtained within 2 to 4 iterations (of maximization 
of the auxiliary function). 

3 AMAP 

The recognition of handwritten characters from a pen trajectory on a digitizing 
surface is often done in the time domain. Trajectories are normalized, and local 
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geometrical or dynamical features are sometimes extracted. The recognition is 
performed using curve matching (Tappert 90), or other classification techniques such 
as Neural Networks (Guyon et al 91). While, as stated earlier, these representations 
have several advantages, their dependence on stroke ordering and individual writing 
styles makes them difficult to use in high accuracy, writer independent systems that 
integrate the segmentation with the recognition. 

Since the intent of the writer is to produce a legible image, it seems natural to 
preserve as much of the pictorial nature of the signal as possible, while at the same 
time exploit the sequential information in the trajectory. We propose a representa­
tion scheme, called AMAP, where pen trajectories are represented by low-resolution 
images in which each picture element contains information about the local proper­
ties of the trajectory. More generally, an AMAP can be viewed as a function in a 
multidimensional space where each dimension is associated with a local property of 
the trajectory, say the direction of motion e, the X position, and the Y position of 
the pen. The value of the function at a particular location (e, X, Y) in the space 
represents a smooth version of the "density" of features in the trajectory that have 
values (e, X, Y) (in the spirit of the generalized Hough transform). An AMAP is a 
multidimensional array (say 4x10x10) obtained by discretizing the feature density 
space into "boxes". Each array element is assigned a value equal to the integral of 
the feature density function over the corresponding box. In practice, an AMAP is 
computed as follows. At each sample on the trajectory, one computes the position 
of the pen (X, Y) and orientation of the motion () (and possibly other features, such 
as the local curvature c). Each element in the AMAP is then incremented by the 
amount of the integral over the corresponding box of a predetermined point-spread 
function centered on the coordinates of the feature vector. The use of a smooth 
point-spread function (say a Gaussian) ensures that smooth deformations of the 
trajectory will correspond to smooth transformations of the AMAP. An AMAP can 
be viewed as an "annotated image" in which each pixel is a feature vector. 

A particularly useful feature of the AMAP representation is that it makes very few 
assumptions about the nature of the input trajectory. It does not depend on stroke 
ordering or writing speed, and it can be used with all types of handwriting (capital, 
lower case, cursive, punctuation, symbols). Unlike many other representations (such 
as global features), AMAPs can be computed for complete words without requiring 
segmentation. 

4 Convolutional Neural Networks 

Image-like representations such as AMAPs are particularly well suited for use in 
combination with Multi-Layer Convolutional Neural Networks (MLCNN) (Le Cun 
89, Le Cun et al 90). MLCNNs are feed-forward neural networks whose architectures 
are tailored for minimizing the sensitivity to translations, rotations, or distortions 
of the input image. They are trained with a variation of the Back-Propagation 
algorithm (Rumelhart et al 86, Le Cun 86). 

The units in MCLNNs are only connected to a local neighborhood in the previous 
layer. Each unit can be seen as a local feature detector whose function is determined 
by the learning procedure. Insensitivity to local transformations is built into the 
network architecture by constraining sets of units located at different places to use 
identical weight vectors, thereby forcing them to detect the same feature on different 
parts of the input. The outputs of the units at identical locations in different feature 
maps can be collectively thought of as a local feature vector. Features of increasing 
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complexity and globality are extracted by the neurons in the successive layers. 

This weight-sharing technique has two interesting side effects. First, the number 
of free parameters in the system is greatly reduced since a large number of units 
share the same weights. Classically, MLCNNs are shown a single character at the 
input, a.nd have a single set of outputs. However, an essential feature of MLCNNs 
is that they can be scanned (replicated) over large input fields containing multiple 
unsegmented characters (whole words) very economically by simply performing the 
convolutions on larger inputs. Instead of producing a single output vector, SDNNs 
produce a series of output vectors. The outputs detects and recognize characters at 
different (and overlapping) locations on the input. These multiple-input, multiple­
output MLCNN are called Space Displacement Neural Networks (SDNN) (Matan 
et al 92). 

One of the best networks we found for character recognition has 5 layers arranged 
as follows: layer 1: convolution with 8 kernels of size 3x3, layer 2: 2x2 subsampling, 
layer 3: convolution with 25 kernels of size 5x5, layer 4 convolution with 84 kernels 
of size 4x4, layer 5: 2x2 subsampling. The subsampling layers are essential to the 
network's robustness to distortions. The output layer is one (single MLCNN) or 
a series of (SDNN) 84-dimensional vectors. The target output configuration for 
each character class was chosen to be a bitmap of the corresponding character in a 
standard 7x12 (=84) pixel font. Such a code facilitates the correction of confusable 
characters by the postprocessor. 

5 Post-Processing 

The convolutional neural network can be used to give scores associated to characters 
when the network (or a piece of it corresponding to a single character output) has 
an input field, called a segment, that covers a connected subset of the whole word 
input. A segmentation is a sequence of such segments that covers the whole word 
input. Because there are in general many possible segmentations, sophisticated 
tools such as hidden Markov models and dynamic programming are used to search 
for the best segmentation. 

In this paper, we consider two approaches to the segmentation problem called IN­
SEG (for input segmentation) and OUTSEG (for output segmentation). The post­
processor can be generally decomposed into two levels: 1) character level scores and 
constraints obtained from the observations, 2) word level constraints (grammar, 
dictionary). The INSEG and OUTSEG systems share the second level. 

In an INSEG system, the network is applied to a large number of heuristically 
segmented candidate characters. A cutter generates candidate cuts, which can po­
tentially represent the boundary between two character segments. It also generates 
definite cuts, which we assume that no segment can cross. Using these, a number 
of candidate segments are constructed and the network is applied to each of them 
separately. Finally, for each high enough character score in each of the segment, a 
character hypothesis is generated, corresponding to a node in an observation graph . 
The connectivity and transition probabilities on the arcs of the observation graph 
represent segmentation and geometrical constraints (e.g., segments must not over­
lap and must cover the whole word, some transitions between characters are more 
or less likely given the geometrical relations between their images). 

In an OUTSEG system, all segmentation decisions are delayed until after the recog-
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nition, as is often done in speech recognition. The AMAP of the entire word is 
shown to an SDNN, which produces a sequence of output vectors equivalent to (but 
obtained much more cheaply than) scanning the single-character network over all 
possible pixel locations on the input. The Euclidean distances between each output 
vector and the targets are interpreted as log-likelihoods of the output given a class . 
To construct an observation graph, we use a set of character models (HMMs) . Each 
character HMM models the sequence of network outputs observed for that charac­
ter . We used three-state HMMs for each character, with a left and right state to 
model transitions and a center state for the character itself. The observation graph 
is obtained by connecting these character models , allowing any character to follow 
any character. 

On top of the constraints given in the observation graph , additional constraints that 
are independent of the observations are given by what we call a gram mar graph, 
which can embody lexical constraints. These constraints can be given in the form 
of a dictionary or of a character-level grammar (with transition probabilities), such 
as a trigram (in which we use the probability of observing a character in the context 
of the two previous ones). The recognition finds the best path in the observation 
graph that is compatible with the grammar graph. The INSEG and OUTSEG 
architecture are depicted in Figure 2. 
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Figure 2: INSEG and OUTSEG architectures for word recognition. 

A crucial contribution of our system is the joint training of the neural network and 
the post-processor with respect to a single criterion that approximates word-level 
errors. We used the following discriminant criterion: minimize the total cost (sum 
of negative log-likelihoods) along the "correct" paths (the ones that yield the correct 
interpretations) , while minimizing the costs of all the paths (correct or not). The 
discriminant nature of this criterion can be shown with the following example. If 
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the cost of a path associated to the correct interpretation is much smaller than all 
other paths, then the criterion is very close to 0 and no gradient is back-propagated. 
On the other hand , if the lowest cost path yields an incorrect interpretation but dif­
fers from a path of correct interpretation on a sub-path, then very strong gradients 
will be propagated along that sub-path , whereas the other parts of the sequence 
will generate almost no gradient. \Vithin a probabilistic framework, this criterion 
corresponds to the maximizing the mutual information (MMI) between the obser­
vations and the correct interpretation. During global training , it is optimized using 
(enhanced) stochastic gradient descent with respect to all the parameters in the sys­
tem, most notably the network weights. Experiments described in the next section 
have shown important reductions in error rates when training with this word-level 
criterion instead of just training the network separately for each character. Similar 
combinations of neural networks with HMMs or dynamic programming have been 
proposed in the past, for speech recognition problems (Bengio et al 92). 

6 Experimental Results 

In a first set of experiments, we evaluated the generalization ability of the neural 
network classifier coupled with the word normalization preprocessing and AMAP 
input representation. All results are in writer independent mode (different writers 
in training and testing). Tests on a da tabase of isolated characters were performed 
separately on four types of characters: upper case (2.99% error on 9122 patterns), 
lower case (4.15% error on 8201 patterns), digits (1.4% error on 2938 patterns), and 
punctuation (4.3% error on 881 patterns). Experiments were performed with the 
network architecture described above. 

The second and third set of experiments concerned the recognition of lower case 
words (writer independent). The tests were performed on a database of 881 words. 
First we evaluated the improvements brought by the word normalization to the 
INSEG system. For the OUTSEG system we have to use a word normalization 
since the network sees a whole word at a time. With the INSEG system, and 
before doing any word-level training, we obtained without word normalization 7.3% 
and 3.5% word and character errors (adding insertions, deletions and substitutions) 
when the search was constrained within a 25461-word dictionary. When using the 
word normalization preprocessing instead of a character level normalization, error 
rates dropped to 4.6% and 2.0% for word and character errors respectively, i.e., a 
relative drop of 37% and 43% in word and character error respectively. 

In the third set of experiments, we measured the improvements obtained with the 
joint training of the neural network and the post-processor with the word-level 
criterion, in comparison to training based only on the errors performed at the char­
acter level. Training was performed with a database of 3500 lower case words. For 
the OUTSEG system, without any dictionary constraints, the error rates dropped 
from 38% and 12.4% word and character error to 26% and 8.2% respectively after 
word-level training, i.e., a relative drop of 32% and 34%. For the INSEG system 
and a slightly improved architecture, without any dictionary constraints, the error 
rates dropped from 22.5% and 8.5% word and character error to 17% and 6.3% 
respectively, i.e., a relative drop of 24.4% and 25.6%. With a 25461-word dictio­
nary, errors dropped from 4.6% and 2.0% word and character errors to 3.2% and 
1.4% respectively after word-level training, i.e., a relative drop of 30.4% and 30.0%. 
Finally, some further improvements can be obtained by drastically reducing the size 
of the dictionary to 350 words, yielding 1.6% and 0.94% word and character errors. 
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7 Conclusion 

We have demonstrated a new approach to on-line handwritten word recognition 
that uses word or sentence-level preprocessing and normalization, image-like repre­
sentations, Convolutional neural networks, word models, and global training using 
a highly discriminant word-level criterion. Excellent accuracy on various writer 
independent tasks were obtained with this combination. 
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