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Abstract 

We consider the problem of how the CNS learns to control dynam­
ics of a mechanical system. By using a paradigm where a subject's 
hand interacts with a virtual mechanical environment , we show 
that learning control is via composition of a model of the imposed 
dynamics. Some properties of the computational elements with 
which the CNS composes this model are inferred through the gen­
eralization capabilities of the subject outside the training data. 

1 Introduction 

At about the age of three months, children become interested in tactile exploration 
of objects around them. They attempt to reach for an object , but often fail to 
properly control their arm and end up missing their target. In the ensuing weeks, 
they rapidly improve and soon they can not only reach accurately, they can also 
pick up the object and place it. Intriguingly, during this period of learning they 
tend to perform rapid, flailing-like movements of their arm, as if trying to "excite" 
the plant that they wish to control in order to build a model of its dynamics. 

From a control perspective , having a model of the arm's skeletal dynamics seems 
necessary because of the relatively low gain of the fast acting feedback system 
in the spinal neuro-muscular controllers (Crago et al. 1976), and the long delays in 
transmission of sensory information to the supra-spinal centers. Such a model could 
be used by the CNS to predict the muscular forces that need to be produced in order 
to move the arm along a desired trajectory. Yet, this model by itself is not sufficient 

1077 



1078 Shadmehr and Mussa-Ivaldi 

for performing a contact task because most objects which our hand interacts with 
change the arm's dynamics significantly. We are left with a situation in which we 
need to be able to quickly acquire a model of an object's dynamics so that we can 
incorporate it in the control system for the arm. How we learn to construct a model 
of a dynamical system and how our brains represent the composed model are the 
subjects of this research. 

2 Learning Dynamics of a Mechanical System 

To make the idea behind learning dynamics evident, consider the example of con­
trolling a robotic arm. The arm may be seen as an inertially dominated mechanical 
admitance, accepting force as input and producing a change in state as its output: 

q = H(q)-l (F - C(q, q)) (1) 

where q is the configuration of the robot, H is the inertia tensor, F is the input 
force from some controllable source (e.g., motors), and C is the coriolis/centripetal 
forces. In learning to control the arm, i.e., having it follow a certain state trajectory 
or reach a final state, we form a model which has as its input the desired change in 
the state of the arm and receive from its output a quantity representing the force 
that should be produced by the actuators. Therefore, what needs to be learned is 
a map from state and desired changes in state to force: 

iJ(q, q, iid) = if(q)qd + C(q, q) 

Combine the above model with a simple PD feedback system, 

F = iJ + if K(q - qd) + if B(q - qd) 

(2) 

and the dynamics of the system in Eq. (1) can now be written in terms of a new 
variable s = q - qd, i.e., the error in the trajectory. It is easy to see that if we have 
if ~ Hand C ~ C, and if J( and B are positive definite, then s will be a decreasing 
function of time, i.e., the system will be globally stable. 

Learning dynamics means forming the map in Eq. (2). The computational elements 
which we might use to do this may vary from simple memory cells that each have an 
address in the state space (e.g., Albus 1975, Raibert & Wimberly 1984, Miller et al. 
1987), to locally linear functions restricted to regions where we have data (Moore 
& Atkeson 1994), to sigmoids (Gomi & Kawato 1990) and radial basis functions 
which can broadly encode the state space (Botros & Atkeson 1991). Clearly, the 
choice that we make in our computational elements will affect how the learned map 
will generalize its behavior to regions of the state space outside of the training data. 
Furthermore, since the task is to learn dynamics of a mechanical system (as opposed 
to, for example, dynamics of a financial market), certain properties of mechanical 
systems can be used to guide us in our choice for the computational elements. For 
example, the map from states to forces for any mechanical system can be linearly 
parameterized in terms of its mass properties (Slotine and Li, 1991). In an inertially 
dominated system (like a multi-joint arm) these masses may be unknown, but the 
fact that the dynamics can be linearized in terms of the unknowns makes the task 
of learning control much simpler and orders of magnitude faster than using, for 
example, an unstructured memory based approach. 
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Figure 1: Dynamics of a real 2 DOF robot was learned so to produce a desired trajectory. 
A: Schematic of the robot. The desired trajectory is the quarter circle. Performance of a 
PD controller is shown by the gray line, as well as in B, where joint trajectories are drawn: 
the upper trace is the shoulder joint and the lower trace is the elbow joint. Desired joint 
trajectory is solid line, actual trajectory is the gray line. C: Performance when the PD 
controller is coupled with an adaptive model. D: Error in trajectory. Solid line is PD, 
Gray line is PD+adaptation. 

To illustrate this point, consider the task of learning to control a real robot arm. 
Starting with the assumption that the plant has 2 degrees of freedom with rota­
tional joints, inertial dynamics of Eq. (2) can be written as a product of a known 
matrix-function of state-dependent geometric transformations Y, and an unknown 
(but constant) vector a, representing the masses, center of masses, and link lengths: 
D( q , q, qd) = Y (q, q, qd) a . The matrix Y serves the function of referring the un­
known masses to their center of rotation and is a geometric transformation which 
can be derived from our assumption regarding the structure of the robot. It is 
these geometric transformations that can guide us in choosing the computational 
elements for encoding the sensory data (q and q). 

We used this approach to learn to control a real robot. The adaptation law was 
derived from a Lyapunov criterion, as shown by Slotine and Li (1991): 

~ = _yT (q, q, qd) (q - qd(t) + q - qd(t)) 

The system converged to a very low trajectory tracking error within only three pe­
riods of the movement (Fig. 1). This performance is achieved despite the fact that 
our model of dynamics ignores frictional forces, noise and delay in the sensors, and 
dynamics of the actuators. In contrast, using a sigmoid function as the basic com-
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putational element of the map and training via back-propagation led to comparable 
levels of performance in over 4000 repetitions of the training data (Shadmehr 1990) . 
The difference in performance of these two approaches was strictly due to the choice 
of the computational elements with which the map of Eq. (2) was formed. 

Now consider the task of a child learning dynamics of his arm, or that of an adult 
picking up a hammer and pounding a nail. We can scarcely afford thousands of 
practice trials before we have built an adequate model of dynamics. Our proposal 
is that because dynamics of mechanical systems are distinctly structured, perhaps 
our brains also use computational elements that are particularly suited for learning 
dynamics of a motor task (as we did in learning to control the robot in Fig. 1). How 
to determine the structure of these elements is the subject of the following sections. 

3 A Virtual Mechanical Environment 

To understand how humans represent learned dynamics of a motor task, we designed 
a paradigm where subjects reached to a target while their hand interacted with a 
virtual mechanical environment. This environment was a force field produced by a 
manipulandum whose end-effector was grasped by the subject. The field of forces 
depended only on the velocity of the hand, e.g., F = Bx, as shown in Fig. 2A, 
and significantly changed the dynamics of the limb: When the robot's motors were 
turned off (null field condition), movements were smooth, straight line trajectories 
to the target (Fig. 2B). When coupled with the field however, the hand 's trajectory 
was now significantly skewed from the straight line path (Fig. 2C). 

It has been suggested that in making a reaching movement, the brain formulates 
a kinematic plan describing a straight hand path along a smooth trajectory to the 
target (Morasso 1981) . Initially we asked whether this plan was independent of the 
dynamics of the moving limb. If so, as the subject practiced in the environment, 
the hand path should converge to the straight line, smooth trajectory observed in 
the null field . Indeed , with practice , trajectories in the force field did converge to 
those in the null field. This was quantified by a measure of correlation which for all 
eight subjects increased monotonically with practice time. 

If the CNS adapted to the force field by composing a model of its dynamics, then 
removal of the field at the onset of movement (un-be-known to the subject) should 
lead to discrepancies between the actual field and the one predicted by the subject's 
model, resulting in distorted trajectories which we call after-effects. The expected 
dynamics of these after-effects can be predicted by a simple model of the upper 
arm (Shadmehr and Mussa-Ivaldi 1994). Since the after-effects are a by-product 
of the learning process, we expected that as subjects adapted to the field, their 
performance in the null field would gradually degrade. We observed this gradual 
growth of the after-effects, leading to grossly distorted trajectories in the null field 
after subjects had adapted to the force field (Fig. 2D). This evidence suggested that 
the CNS composed a model of the field and used this model to compensate for the 
forces which it predicted the hand would encounter during a movement. 

The information contained in the learned model is a map whose input is the state 
and the desired change in state of the limb, and whose output is force (Eq. 2). How 
is this map implemented by the CNS? Let us assume that the approximation is via 



I 
0.5 

~ 
~ 0 
~ 
>-
-g .. 
r -0.5 

A -1 

Computational Elements of the Adaptive Controller of the Human Arm 1081 

15o,------------. 

-0.5 0.5 B -150 '--------,-1~00--=:-50-~-------:5::-:-0 -1:-:"':OO--,J150 

Hand x-velocrty (rrV$) Displacement (mm) 

Figure 2: A: The virtual mechanical environment as a force field. B: Trajectory of reach­
ing movements (center-out) to 8 targets in a null field. C: Average±standard-deviation 
of reaches to same targets when the field was on, before adaptation. D: After-affects of 
adaptation, i.e., when moving in a null field but expecting the field. 

a distributed set of computational elements (Poggio 1990). What are the properties 
of these elements? An important property may be the spatial bandwidth, i.e_, the 
size of the receptive field in the input space (the portion of the input space where 
the element generates a significant output). This property greatly influences how 
the eNS might interpolate between states which it has visited during training, and 
whether it can generalize to regions beyond the boundary of the training data. 

For example, in eye movements, it has been suggested that a model of dynamics of 
the eye is stored in the cerebellum (Shidara et al. 1992). Cells which encode this 
model (Purkinje cells) vary their firing rate as a linear function of the state of the 
eye, and the sum of their outputs (firing rates) correlates well with the force that the 
muscles need to produce to move the eye. Therefore, the model of eye's dynamics 
is encoded via cells with very large receptive fields. On the other hand, cells which 
take part in learning a visual hyperacuity task may have very small receptive fields 
(Poggio et al. 1992), resulting in a situation where training in a localized region 
does not lead to generalization. 

In learning control of our limbs, one possibility for the computational elements is the 
neural control circuits in the spinal cord (Mussa-Ivaldi 1992). Upon activation of 
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Figure 3: A: Schematic of subject's arm and the trained region of the workspace where 
the force field was presented and the "test" region where the transferred effects were 
measured. B: After-effects at the test region. C: A joint-based translation of the force 
field shown in Fig. 2A to the novel workspace. This is the field that the subject expected 
at the test region. 

one such circuit, muscles produce a time varying force field, i.e., forces which depend 
on the state of the limb (position and velocity) and time (Mussa-Ivaldi et al. 1990). 
Let us call the force function produced by one such motor element h(q, q, t) . It 
turns out that as one changes the amount of activation to a motor element, the 
output forces essentially scale . When two such motor elements are activated, the 
resulting force field is a linear combination of the two individual fields (Bizzi et al. 

1991): f = 2::;=1 Cdi(q, q, t). 
N ow consider the task of learning to move in the field shown in Fig. 2A. The 
model that the eNS builds is a map from state of the limb to forces imposed by the 
environment. Following the above scenario, the task is to find coefficients Ci for each 
element such that the output field is a good approximation of the environmental 
field. Unlike the computational elements of a visual task however, we may postulate 
that the motor elements are characterized by their broad receptive fields . This is 
because muscular force changes gradually as a function of the state of the limb 
and therefore its output force is non zero for wide region of the state space. It 
follows that if learning dynamics was accomplished through formation of a map 
whose computational elements were these motor functions, then because of the large 
spatial bandwidth of the elements the composed model should be able to generalize 
to well beyond the region of the training data. 
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To test this, we limited the region of the input space for which training data was 
provided and quantified the subject's ability to generalize to a region outside the 
training set. Specifically, we limited the workspace where practice movements in the 
force field took place and asked whether local exposure to the field led to after-effects 
in other regions (Fig. 3A). We found that local training resulted in after-effects in 
parts ofthe workspace where no exposure to the field had taken place (Fig. 3B) . This 
indicated that the model composed by the CNS predicted specific forces well outside 
the region in which it had been trained. The existence of this generalization showed 
that the computational elements with which the internal model was implemented 
had broad receptive fields. 

The transferred after-effects (Fig. 3B) show that at the novel region of the 
workspace, the subject's model of the environment predicted very different forces 
than the one on which the subject had been trained on (compare with Fig. 2D). 
This rejected the hypothesis that the composed model was a simple mapping (i.e., 
translation in variant) in a hand-based coordinate system, i.e., from states of the 
arm to forces on the hand. The alternate hypothesis was that the composed model 
related observed states of the arm to forces that needed to be produced by the 
muscles and was translation invariant in a coordinate system based on the joints 
and muscles. This would be the case, for example, if the computational elements 
encoded the state of the arm linearly (analogous to Purkinje cells for the case of 
eye movements) in joint space . 

To test this idea, we translated the field in which the subject had practiced to the 
novel region in a coordinate system defined based on the joint space of the subject's 
arm, resulting in the field shown in Fig. 3C. We recorded the performance of the 
subjects in this new field at the novel region of the workspace (after they had been 
trained on field of Fig. 2A) and found that performance was near optimum at the 
first exposure. This indicated that the geometric structure of the composed model 
supported transfer of information in an intrinsic, e.g., joint based, coordinate sys­
tem. This result is consistent with the hypothesis that the computational elements 
involved in this learning task broadly encode the state space and represent their 
input in a joint-based coordinate system and not a hand-based one. 

4 Conclusions 

In learning control of an inertially dominated mechanical system, knowledge of the 
system's geometric constraints can direct us to choose our computational elements 
such that learning is significantly faciliated. This was illustrated by an example 
of a real robot arm: starting with no knowledge of its dynamics, a reasonable 
model was learned within 3 periods of a movements (as opposed to thousands of 
movements when the computational elements were chosen without regard to the 
geometric properties). We argued that in learning to control the human arm, the 
CNS might also make assumption regarding geometric properties of its links and 
use specialized computational elements which facilitate learning of dynamics. 

One possibility for these elements are the discrete neuronal circuits found in the 
spinal cord. The function of these circuits can be mathematically formulated such 
that a map representing inverse dynamics of the arm is formed via a combination 
of the elements. Because these computational elements encode their input space 
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broadly, i.e., has significant output for a wide region of the input space, we expected 
that if subjects learned a dynamical process from localized training data, then the 
formed model should generalize to novel regions of the state space. Indeed we found 
that the subjects transferred the training information to novel regions of the state 
space, and this transfer took place in a coordinate system similar to that of the 
joints and muscles. We therefore suggest that the eNS learns control of the arm 
through formation of a model whose computational elements broadly encode the 
state space, and that these elements may be neuronal circuits of the spinal cord. 
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