
Identifying Fault-Prone Software 
Modules Using Feed-Forward Networks: 

A Case Study 

N. Karunanithi 
Room 2E-378, Bellcore 

435 South Street 
Morristown, NJ 07960 

E-mail: karun@faline.bellcore.com 

Abstract 

Functional complexity of a software module can be measured in 
terms of static complexity metrics of the program text. Classify­
ing software modules, based on their static complexity measures, 
into different fault-prone categories is a difficult problem in soft­
ware engineering. This research investigates the applicability of 
neural network classifiers for identifying fault-prone software mod­
ules using a data set from a commercial software system. A pre­
liminary empirical comparison is performed between a minimum 
distance based Gaussian classifier, a perceptron classifier and a 
multilayer layer feed-forward network classifier constructed using 
a modified Cascade-Correlation algorithm. The modified version 
of the Cascade-Correlation algorithm constrains the growth of the 
network size by incorporating a cross-validation check during the 
output layer training phase. Our preliminary results suggest that 
a multilayer feed-forward network can be used as a tool for iden­
tifying fault-prone software modules early during the development 
cycle. Other issues such as representation of software metrics and 
selection of a proper training samples are also discussed. 

793 



794 Karunanithi 

1 Problem Statement 

Developing reliable software at a low cost is an important issue in the area of soft­
ware engineering (Karunanithi, Whitley and Malaiya, 1992). Both the reliability 
of a software system and the development cost can be reduced by identifying trou­
blesome software modules early during the development cycle. Many measurable 
program attributes have been identified and studied to characterize the intrinsic 
complexity and the fault proneness of software systems. The intuition behind soft­
ware complexity metrics is that complex program modules tend to be more error 
prone than simple modules. By controlling the complexity of software modules 
during development, one can produce software systems that are easy to maintain 
and enhance (because simple program modules are easy to understand). Static 
complexity metrics are measured from the passive program texts early during the 
development cycle and can be used as a valuable feedback for allocating resources 
in future development efforts (future releases or new projects). 

Two approachs can be applied to relate static complexity measures with faults 
found or program changes made during testing. In the estimative approach regres­
sions models are used to predict the actual number of faults that will be disclosed 
during testing (Lipow, 1982; Gaffney, 1984; Shen et al., 1985; Crawford et al., 1985; 
Munson and Khoshgoftaar, 1992). Regression models assume that the metrics that 
constitute independent variables are independent and normally distributed. How­
ever, most practical measures often violate the normality assumptions and exhibit 
high correlation with other metrics (i.e., multicollinearity). The resulting fit of the 
regression models often tend to produce inconsistent predictions. 

Under the classification approach software modules are categorized into two or more 
fault-prone classes (Rodriguez and Tsai, 1987; Munson and Khoshgoftaar, 1992; 
Karunanithi, 1993; Khoshgoftaar et al., 1993). A special case of the classifica­
tion approach is to classify software modules into either low-fault (non-complex) or 
high-fault (complex) categories. The main rationale behind this approach is that 
the software managers are often interested in getting some approximate feedback 
from this type of models rather than accurate predictions of the number of faults 
that will be disclosed. Existing two-class categorization models are based on lin­
ear discriminant principle (Rodriguez and Tsai, 1987; Munson and Khoshgoftaar, 
1992). Linear discriminant models assume that the metrics are orthogonal and that 
they follow a normal distribution. To reduce multicollinearity, researchers often use 
principle component analysis or some other dimensionality reduction techniques. 
However, the reduced metrics may not explain all the variability if the original 
metrics have nonlinear relationship. 

In this paper, the applicability of neural network classifiers for identifying fault 
proneness of software modules is examined. The motivation behind this research is 
to evaluate whether classifiers can be developed without usual assumptions about 
the input metrics. In order to study the usefulness of neural network classifiers, a 
preliminary comparison is made between a simple minimum distance based Gaus­
sian classifier, a single layer perceptron and a multilayer feed-forward network devel­
oped using a modified version of Fahlman's Cascade Correlation algorithm (Fahlman 
and Lebiere, 1990). The modified algorithm incorporates a cross-validation for con­
straining the growth of the size of the network. In this investigation, other issues 



Identifying Fault-Prone Software Modules Using Feed-Forward Networks: A Case Study 795 

such as selection of proper training samples and representation of metrics are also 
considered. 

2 Data Set Used 

The metrics data used in this study were obtained from a research conducted by Lind 
and Vairavan (Lind and Vairavan, 1989) for a Medical Imaging System software. 
The complete system consisted of approximately 4500 modules amounting to about 
400,000 lines of code written in Pascal, FORTRAN, PL/M and assembly level. 
From this set, a random sample of 390 high level language routines was selected 
for the analysis. For each module in the sample, program changes were recorded 
as an indication of software fault. The number of changes in the program modules 
varied from zero to 98. In addition to changes, 11 software complexity metrics 
were extracted from each module. These metrics range from total lines of code 
to Belady's bandwidth metric. (Readers curious about these metrics may refer to 
Table I of Lind and Vairavan, 1989.) For the purpose of our classification study, 
these metrics represent 11 input (both real and integer) variables of the classifier. 

A software module is considered as a low fault-prone module (Category I) if there 
are 0 or 1 changes and as a high fault-prone module (Category II) if there are 10 
or more changes. The remaining modules are considered as medium fault category. 
For the purpose of this study we consider only the low and high fault-prone modules. 
Our extreme categorization and deliberate discarding of program modules is similar 
to the approach used in other studies (Rodriguez and Tsai, 1987; Munson and 
Khoshgoftaar, 1992). After discarding medium fault-prone modules, there are 203 
modules left in the data set. Of 203 modules, 114 modules belong to the low 
fault-prone category while the remaining 89 modules belong to the high fault-prone 
category. The output layer of the neural nets had two units corresponding to two 
fault categories. 

3 Training Data Selection 

We had two objectives in selecting training data: 1) to evaluate how well a neural 
network classifier will perform across different sized training sets and 2) to select 
the training data as much unbiased as possible. The first objective was motivated 
by the need to evaluate whether a neural network classifier can be used early in the 
software development cycle. Thus the classification experiments were conducted 
using training samples of size S = ~, ~, }, ~, ~, 190 fraction of 203 samples belonging 
to Categories I and II. The remaining ~ 1-S) fraction of the samples were used for 
testing the classifiers. In order to avoid bias in the training data, we randomly 
selected 10 different training samples for each fraction S. This resulted in 6 X 10 
(=60) different training and test sets. 



796 Karunanithi 

4 Classifiers Compared 

4.1 A Minimum Distance Classifier 

In order to compare neural network classifiers and linear discriminant classifiers we 
implemented a simple minimum distance based two-class Gaussian classifier of the 
form (Nilsson, 1990): 

IX - Gi l = ((X - Gi)(X - Gi)t)1/2 
where Gi, i = 1, 2 represent the prototype points for the Categories I and II, X is 
a 11 dimensional metrics vector, and t is the transpose operator. The prototype 
points G1 and G2 are calculated from the training set based on the normality as­
sumption. In this approach a given arbitrary input vector X is placed in Category 
I if IX - G11 < IX - G21 and in Category II otherwise. 

All raw component metrics had distributions that are asymmetric with a positive 
skew (i .e., long tail to the right) and they had different numerical ranges. Note 
that asymmetric distributions do not conform to the normality assumption of a 
typical Gaussian classifier . First, to remove the extreme asymmetry of the original 
distribution of the individual metric we transformed each metric using a natural 
logarithmic base. Second, to mask the influence of individual component metric on 
the distance score, we divided each metric by its standard deviation of the training 
set. These transformations considerably improved the performance of the Gaussian 
classifier. To be consistent in our comparison we used the log transformed inputs 
for other classifiers also. 

4.2 A Perceptron Classifier 

A perceptron with a hard-limiting threshold can be considered as a realization of a 
non-parametric linear discriminant classifier. If we use a sigmoidal unit, then the 
continuous valued output of the perceptron can be interpreted as a likelihood or 
probability with which inputs are assigned to different classes. In our experiment we 
implemented a perceptron with two sigmoidal units (outputs 1 and 2) corresponding 
to two categories. A given arbitrary vector X is assigned to Category I if the value 
of the output unit 1 is greater than the output of the unit 2 and to Category II 
otherwise. The weights of the network are determined iteratively using least square 
error minimization procedure. In almost all our experiments, the perceptron learned 
about 75 to 80 percentages of the training set. This implies that the rest of the 
training samples are not linearly separable. 

4.3 A Multilayer Network Classifier 

To evaluate whether a multilayer network can perform better than the other two 
classifiers, we repeated the same set of experiments using feed-forward networks 
constructed by Fahlman's Cascade-Correlation algorithm. The Cascade-Correlation 
algorithm is a constructive training algorithm which constructs a suitable network 
architecture by adding one hidden (layer) unit at a time. (Refer to Fahlman and 
Lebiere, 1990 for more details on the Cascade-Correlation algorithm.) Our initial 
results suggested that the multilayer layer networks constructed by the Cascade­
Correlation algorithm are not capable of producing a better classification accuracy 



Identifying Fault-Prone Software Modules Using Feed-Forward Networks: A Case Study 797 

than the other two classifiers. An analysis of the network suggested that the re­
sulting networks had too many free variables (i.e., due to too many hidden units). 
A further analysis of the rate of decrease of the residual error versus the number 
of hidden units added to the networks revealed that the Cascade-Correlation algo­
rithm is capable of adding more hidden units to learn individual training patterns 
at the later stages of the training phase than in the earlier stages. This happens 
if the training set contains patterns that are interspersed across different decision 
regions or what might be called "border patterns" (Ahmed, S. and Tesauro, 1989). 
In an effort to constrain the growth of the size of the network, we modified the 
Cascade-Correlation algorithm to incorporate a cross-validation check during the 
output layer training phase. For each training set of size S, one third was used 
for cross-validation and the remaining two third was used to train the network. 
The network .construction was stopped as soon as the residual error of the cross­
validation set stopped decreasing from the residual error at the end of the previous 
output layer training phase. The resulting network learned about 95% of the train­
ing patterns. However, the cross-validated construction considerably improved the 
classification performance of the networks on the test set. Table 1 presented in 
the next section provides a comparison between the networks developed with and 
without cross-validation. 

Training Hidden Unit Error Statistics 
Set Size Statistics Type I Error Type II Error 
Sin% Mean I Std Mean I Std Mean I Std 

Without Cross-Validation 
25 5.1 1.5 24.64 7.2 16.38 6.4 
33 6.2 1.8 20.24 8.4 17.27 5.5 
50 7.4 1.8 18.30 7.4 18.65 6.4 
67 9.7 1.7 15.78 6.5 18.05 7.1 
75 10.4 1.8 14.54 7.6 16.85 7.3 
90 11.2 1.6 10.33 7.2 17.73 8.3 

With Cross-Validation 
25 1.9 1.3 20.19 5.4 12.11 4.7 
33 2.2 1.0 18.24 5.5 12.40 4.1 
50 2.0 0.9 17.41 5.6 15.04 5.2 
67 2.7 1.1 14.32 5.8 14.08 5.5 
75 2.7 1.3 13.27 7.0 13.84 5.4 
90 2.9 1.2 9.77 9.4 15.47 5.1 

Table 1: A Comparison of Nets With and Without Cross-Validation. 

5 Results 

In this section we present some preliminary results from our classification experi­
ments. First, we provide a comparison between the multilayer networks developed 
with and without cross-validation. Next, we compare different classifiers in terms 
of their classification accuracy. Since a neural network's performance can be af­
fected by the weight vector used to initialize the network, we repeated the training 
experiment 25 times with different initial weight vectors for each training set. This 



798 Karunanithi 

resulted in a total of 250 training trials for each value of S. The results reported here 
for the neural network classifiers represent a summary statistics for 250 experiments. 

The performance of the classifiers are reported in terms of classification errors. 
There are two type of classification errors that a classifier can make: a Type I error 
occurs when the classifier identifies a low fault-prone (Category I) module as a high 
fault-prone (Category II) module; a Type II error is produced when a high fault­
prone module is identified as a low fault-prone module. From a software manager's 
point of view, these classification errors will have different implications. Type I 
misclassification will result in waste of test resources (because modules that are less 
fault-prone may be tested longer than what is normally required). On the other 
hand, Type II misclassification will result in releasing products that are of inferior 
quality. From reliability point of view, a Type II error is a serious error than a Type 
I error. 

No. of Patterns Error Statistics 
S I Training I Test 
% Set Set 

Gaussian I Perceptron I Multilayer Nets 
Mean 1 Std Mean 'I Std Mean r Std 

Type I Error Statistics 
25 50 86 13.16 4.7 16.17 5.5 20.19 5.4 
33 66 77 11.44 4.0 11.74 3.9 18.24 5.5 
50 101 57 12.45 3.2 11.58 3.2 17.41 5.6 
67 136 37 9.46 4.1 10.14 3.9 14.32 5.8 
75 152 28 8.57 5.4 9.15 5.8 13.27 7.0 
90 182 12 14.17 7.9 4.03 4.3 9.77 9.4 

Type 11 Error Statistics 
25 50 67 15.61 4.2 15.98 7.8 12.11 4.7 
33 66 60 15.46 4.6 15.78 6.6 12.40 4.1 
50 101 45 16.01 5.1 16.97 6.8 15.04 5.2 
67 136 30 16.00 5.4 16.11 7.6 14.08 5.5 
75 152 23 17.39 5.8 18.39 6.3 13.84 5.4 
90 182 9 21.11 6.3 19.11 5.6 15.47 5.1 

Table 2: A Summary of Type I and Type II Error Statistics. 

Table 1 compares the complexity and the performance of the multilayer networks 
developed with and without cross-validation. Columns 2 through 7 represent the 
size and the performance of the networks developed by the Cascade-Correlation 
without cross-validation. The remaining six columns correspond to the networks 
constructed with cross-validation. Hidden unit statistics for the networks suggest 
that the growth of the network can be constrained by adding a cross-validation 
during the output layer training. The corresponding error statistics for both the 
Type I and Type II errors suggest that an improvement classification accuracy can 
be achieved by cross-validating the size of the networks. 

Table 2 illustrates the preliminary results for different classifiers. The first two 
columns in Table 2 represent the size of the training set in terms of S as a per­
centage of all patterns and the number of patterns respectively. The third column 
represents the number oft est patterns in Categories I (1st half) and the II (2nd half). 
The remaining six columns represent the error statistics for the three classifiers in 



Identifying Fault-Prone Software Modules Using Feed-Forward Networks: A Case Study 799 

terms of percentage mean errors and standard deviations. The percentages errors 
were obtained by dividing the number of misclassifications by the total number of 
test patterns in that Category. The Type I error statistics in the first half of the 
table suggest that the Gaussian and the Perceptron classifiers may be better than 
multilayer networks at early stages of the software development cycle. However, 
the difference in performance of the Gaussian classifier is not consistent across all 
values of S. The neural network classifiers seem to improve their performance with 
an increase in the size of the training set. Among neural networks, the perceptron 
classifier seems to perform classification than a multilayer net. However, the Type 
II error statistics in the second half of the table suggest that a multilayer network 
classifier may provide a better classification of Category II modules than the other 
two classifiers. This is an important results from the reliability perspective. 

6 Conclusion and Work in Progress 

We demonstrated the applicability of neural network classifiers for identifying fault­
prone software modules. We compared the classification efficacy of three different 
pattern classifiers using a data set from a commercial software system. Our pre­
liminary empirical results are encouraging in that there is a role for multilayer 
feed-forward networks either during the software development cycle of a subsequent 
release or for a similar product. 

The cross-validation implemented in our study is a simple heuristics for constraining 
the size of the networks constructed by the Cascade-Correlation algorithm. Though 
this improved the performance of the resulting networks, it should be cautioned that 
cross-validation may be needed only if the training patterns exhibit certain charac­
teristics. In other circumstances, the networks may have to be constructed using 
the entire training set. At this stage we have not performed complete analysis 
on what characteristics of the training samples would require cross-validation for 
constraining the network growth. Also we have not used other sophisticated struc­
ture reduction techniques. We are currently exploring different loss functions and 
structure reduction techniques. 

The Cascade-Correlation algorithm always constructs a deep network. Each addi­
tional hidden unit develops an internal representation that is a higher order sig­
moidal computation than those of previously added hidden units. Such a complex 
internal representation may not be appropriate in a classification application such 
as the one studied here. We are currently exploring alternatives to construct shallow 
networks within the Cascade-Correlation frame work. 

At this stage, we have not performed any analysis on how the internal represen­
tations of a multilayer network correlate with the input metrics. This is currently 
being studied. 

References 

Ahmed, S. and G. Tesauro (1989). "Scaling and Generalization in Neural Networks: 
A Case Study", Advances in Neural Information Processing Systems 1, pp 160-168, 
D. Touretzky, ed. Morgan Kaufmann. 



800 Karunanithi 

Crawford, S. G., McIntosh, A. A. and D. Pregibon (1985). "An Analysis of Static 
Metrics and Faults in C Software", The Journal of Systems and Software, Vol. 5, 
pp. 37-48. 

Fahlman, S. E. and C. Lebiere (1990). "The Cascaded-Correlation Learning Ar­
chitecture," Advances in Neural Information Processing Systems 2, pp 524-532, D. 
Touretzky, ed. Morgan Kaufmann. 

Gaffney Jr., J. E. (1984). "Estimating the Number of Faults in Code", IEEE Trans. 
on Software Eng., Vol. SE-lO, No.4, pp. 459-464. 

Karunanithi, N, Whitley, D. and Y. K. Malaiya (1992). "Prediction of Software 
Reliability Using Connectionist Models" , IEEE Trans. on Software Eng., Vol. 18, 
No.7, pp. 563-574. 

Karunanithi, N. (1993). "Identifying Fault-Prone Software Modules Using Con­
nectionist Networks", Proc. of the 1st Int'l Workshop on Applications of Neural 
Networks to Telecommunications, (IWANNT'93), pp. 266-272, J. Alspector et al., 
ed., Lawrence Erlbaum, Publisher. 

Khoshgoftaar, T. M., Lanning, D. L. and A. S. Pandya (1993). "A Neural Network 
Modeling Methodology for the Detection of High-Risk Programs" , Proc. of the 4th 
Int'l Symp. on Software Reliability Eng. pp. 302-309. 

Lind, R. K. and K. Vairavan (1989). "An Experimental Investigation of Software 
Metrics and Their Relationship to Software Development Effort", IEEE Trans. on 
Software Eng., Vol. 15, No.5, pp. 649-653. 

Lipow, M. (1982). "Number of Faults Per Line of Code", IEEE Trans. on Software 
Eng., Vol. SE-8, No.4, pp. 437-439. 

Munson, J. C. and T. M. Khoshgoftaar (1992). "The Detection of Fault-Prone 
Programs", IEEE Trans. on Software Eng., Vol. 18, No.5, pp. 423-433. 

Nilsson, J. Nils (1990). The Mathematical Foundations of Learning Machines, Mor­
gan Kaufmann, Chapters 2 and 3. 

Rodriguez, V. and W. T. Tsai (1987). "A Tool for Discriminant Analysis and 
Classification of Software Metrics", Information and Software Technology, Vol. 29, 
No.3, pp. 137-149. 

Shen, V. Y., Yu, T., Thebaut, S. M. and T. R. Paulsen (1985). "Identifying Error­
Prone Software: An Empirical Study", IEEE Trans. on Software Eng., Vol. SE-ll, 
No.4, pp. 317-323. 


