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Abstract 

What is the 'correct' theoretical description of neuronal activity? 
The analysis of the dynamics of a globally connected network of 
spiking neurons (the Spike Response Model) shows that a descrip­
tion by mean firing rates is possible only if active neurons fire in­
coherently. If firing occurs coherently or with spatio-temporal cor­
relations, the spike structure of the neural code becomes relevant. 
Alternatively, neurons can be gathered into local or distributed en­
sembles or 'assemblies'. A description based on the mean ensemble 
activity is, in principle, possible but the interaction between differ­
ent assemblies becomes highly nonlinear. A description with spikes 
should therefore be preferred. 

1 INTRODUCTION 

Neurons communicate by sequences of short pulses, the so-called action potentials 
or spikes. One of the most important problems in theoretical neuroscience concerns 
the question of how information on the environment is encoded in such spike trains: 
Is the exact timing of spikes with relation to earlier spikes relevant (spike or interval 
code (MacKay and McCulloch 1952) or does the mean firing rate averaged over sev­
eral spikes contain all important information (rate code; see, e.g., Stein 1967)? Are 
spikes of single neurons important or do we have to consider ensembles of equivalent 
neurons (ensemble code)? If so, can we find local ensembles (e.g., columns; Hubel 
and Wiesel 1962) or do neurons form 'assemblies' (Hebb 1949) distributed all over 
the network? 
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2 SPIKE RESPONSE MODEL 

We consider a globally connected network of N neurons with 1 ~ i ~ N. A neuron i 
fires, if its membrane potential passes a threshold (). A spike at time t{ is described 

by a 6-pulse; thus Sf (t) = L:~=1 6(t - t{) is the spike train of neuron i. Spikes are 
labelled such that tt is the most recent spike and tf is the Fth spike going back in 
time. 

In the Spike Response Model, short SRM, (Gerstner 1990, Gerstner and van Hem­
men 1992) a neuron is characterized by two different response junctions, f and "1re f . 
Spikes which neuron i receives from other neurons evoke a synaptic potential 

(1) 

where the response kernel 

{ 
0 for s < Ll tr 

f(S) = ,,_a tr (,,_a tr ) CAt -::-r- exp - -- lor s > u r 
T. T, 

(2) 

describes a typical excitatory or inhibitory postsynaptic potential; see Fig. 1. The 
weight Jij is the synaptic efficacy of a connection from j to i, Ll tr is the axonal (and 
synaptic) transmission time, and T" is a time constant of the postsynaptic neuron. 
The origin S = 0 in (2) denotes the firing time of a presynaptic spike. In simulations 
we usually assume T" = 2 ms and for Lltr a value between 1 and 4 ms 

Similarly, spike emission induces refractoriness immediately after spiking. This is 
modelled by a refractory potential 

with a refractory function 

ref () { -00 
"1 s = "1o/(s _ ,ref) 

for S ~ ,ref 

for S > ,ref. 

(3) 

(4) 

For 0 ~ s ~ ,ref the neuron is in the absolute refractory period and cannot spike at 
all whereas for s > ,ref spiking is possible but difficult (relative refractory period). 
To put it differently, () - "1ref (s) describes an increased threshold immediately after 
spiking; cf. Fig. 1. In simulations, ,ref is taken to be 4 ms. Note that, for the sake 
of simplicity, we assume that only the most recent spike Sf induces refractoriness 
whereas all past spikes Sf contribute to the synaptic potential; cf., Eqs. (1) and (3). 



How to Describe Neuronal Activity: Spikes, Rates, or Assemblies? 465 

Fig 1 Response functions. 
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cillations; d. Section 5. 

The total membrane potential is the sum of both parts, i.e. 

hi(t) = h~ef (t) + h:yn(t). 

Noise is included by introduction of a firing probability 

PF(h; 6t) = r- 1 (h) 6t. 

(5) 

(6) 

where 6t is an infinitesimal time interval and r(h) is a time constant which depends 
on the momentary value of the membrane potential in relation to the threshold (). 
In analogy to the chemical reaction constant we assume 

r(h) = ro exp[-,B(h - (})], (7) 

where ro is the response time at threshold. The parameter ,B determines the amount 
of noise in the system. For,B --+ 00 we recover the noise-free behavior, i.e., a neuron 
fires immediately, if h > () (r --+ 0), but it cannot fire, if h < () (r --+ (0). Eqs. (1), 
(3), (5), and (6) define the spiking dynamics in a network of SRM-neurons. 

3 FIRING STATISTICS 

We start our considerations with a large ensemble of identical neurons driven by the 
same arbitrary synaptic potential h3yn (t) . We assume that all neurons have fired a 
first spike at t = t{ . Thus the total membrane potential is h(t) = hsyn(t) + 7]re f (t­
to. If h(t) slowly approaches (), some of the neurons will fire again. We now ask 
for the probability that a neuron which has fired at time t{ will fire again at a later 

time t. The conditional probability p~2\tlt{) that the next spike of a given neuron 

occurs at time t > t{ is 

p~2)(tlt{) = r-l[h(t)] exp { -1; r- 1[h(S')]dS'} . (8) 

The exponential factor is the portion of neurons that have survived from time t{ to 
time t without firing again and the prefactor r- 1 [h(t)] is the instantaneous firing 
probability (6) at time t. Since the refractory potential is reset after each spike, 
the spiking statistics does not depend on earlier spikes, in other words, it is fully 
described by p~2)(tlt{). This will be used below; cf. Eq. (14) . 
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As a special case, we may consider constant synaptic input h3yn = hO• In this case, 
(8) yields the distribution of inter-spike intervals in a spike train of a neuron driven 
by constant input hO• The mean firing rate at an input level hO is defined as the 
inverse of the mean inter-spike interval. Integration by parts yields 

I[ho] = {J.;dt(t-t{lP~2)(tlt{l} -I = {J.oodsexp{-lT-I[hO+~"f (s'l]ds'} } -I 

(9) 
Thus both firing rate and interval distribution can be calculated for arbitrary inputs. 

4 ASSEMBLY FORMATION AND NETWORK 
DYNAMICS 

We now turn to a large, but structured network. Structure is induced by the 
formation of different assemblies in the system. Each neuronal assembly aP. (Hebb 
1949) consists of neurons which have the tendency to be active at the same time. 
Following the traditional interpretation, active means an elevated mean firing rate 
during some reasonable period of time. Later, in Section 5.3, we will deal with a 
different interpretation where active means a spike within a time window of a few 
ms. In any case, the notion of simultaneous activity allows to define an activity 
pattern {~r, 1 :::; i :::; N} with ~r = 1 if i E aP. and ~r = 0 otherwise. Each neuron 
may belong to different assemblies 1 :::; I-l :::; q. The vector ei = (a, ... ,~n is the 
'identity card' of neuron i, e.g., ei = (1,0,0,1,0) says that neuron i belongs to 
assembly 1 and 4 but not to assembly 2,3, and 5. 

Note that, in general, there are many neurons with the same identity card. This 
can be used to define ensembles (or sublattices) L(x) of equivalent neurons, i.e., 
L(x) = {ilei = x} (van Hemmen and Kiihn 1991). In general, the number of 
neurons IL(x)1 in an ensemble L(x) goes to infinity if N --;. 00, and we write 
IL(x)1 = p(x)N. The mean activity of an ensemble L(x) can be defined by 

I t +at 

A(x, t) = lim lim IL(x)I- 1 L S[ (t)dt. 
at--+o N--+oo t 

iEL(X) 

(10) 

In the following we assume that the synaptic efficacies have been adjusted according 
to some Hebbian learning rule in a way that allows to stabilize the different activity 
patterns or assemblies ap.. To be specific, we assume 

J q q 

Jij = ~ L L Qp.vpost(~r)pre(~j) (11) 
p.=lv=l 

where post(x) and pre(x) are some arbitrary functions characterizing the pre- and 
postsynaptic part of synaptic learning. Note that for Qp.v = fJp.v and post(x) and 
pre(x) linear, Eq. (11) can be reduced to the usual Hebb rule. 

With the above definitions we can write the synaptic potential of a neuron i E L(x) 
in the following form 

q q (>0 
h3yn (x , t) = Jo L L Qp.vpost(xp.) Lpre(zV) 10 f(s')p(z)A(z, t - s')ds'. (12) 

p.=lv=l z 0 
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We note that the index i and j has disappeared and there remains a dependence 
upon x and z only. The activity of a typical ensemble is given by (Gerstner and 
van Hemmen 1993, 1994) 

A(x, t) = 100 p?)(tlt - s)A(x, t - s)ds (13) 

where 

p~2)(tlt-s) = r- 1 [h',yn(x, t)+7]ref (s)] exp {-13r- 1 [h3 yn(x, t - s+s' )+7]ref (s')]ds' } 

(14) 
is the conditional probability (8) that a neuron i E L(x) which has fired at time 
t-s fires again at time t. Equations (12) - (14) define the ensemble dynamics of the 
network. 

5 DISCUSSION 

5.1 ENSEMBLE CODE 

Equations. (12) - (14) show that in a large network a description by mean ensemble 
activities is, in principle, possible. A couple of things, however, should be noted. 
First, the interaction between the activity of different ensembles is highly nonlinear. 
It involves three integrations over the past and one exponentiation; cf. (12) - (14). 
If we had started theoretical modeling with an approach based on mean activities, 
it would have been hard to find the correct interaction term. 

Second, L(x) defines an ensemble of equivalent neurons which is a subset of a given 
assembly al-'. A reduction of (12) to pure assembly activities is, in general, not 
possible. Finally, equivalent neurons that form an ensemble L(x) are not necessarily 
situated next to each other. In fact, they may be distributed all over the network; 
cf. Fig. 2. In this case a local ensemble average yields meaningless results. A 
theoretical model based on local ensemble averaging is useful only if we know that 
neighboring neurons have the same 'identity card'. 
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5.2 RATE CODE 

Fig. 2 
Stationary activity (incoherent 
firing). In this case a descrip­
tion by firing rates is possible. 
(a) Ensemble averaged activity 
A(x, t). (b) Spike raster of 30 
neurons out of a network of 
4000. (c) Time-averaged mean 
firing rate f. We have two dif­
ferent assemblies, one of them 
active (dtr = 2 ms, f3 = 5). 

Can the system of Eqs. (12) -(14) be transformed into a rate description? In general, 
this is not the case but if we assume that the ensemble activities are constant in 
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Fig. 3 Stability of stationary states.The postsynaptic potential h~yn is plotted as a function 
of time. Every 100 ms the delay Lltr has been increased by 0.5 ms. In the stationary state 
(Lltr = 1.5 ms and Ll tr = 3.5 ms), active neurons fire regularly with rate T;l = 1/5.5 ms. 
For a delay Ll tr > 3.5 ms, oscillations with period Wl = 27r /Tp build up rapidly. For 
intermediate delays 2 ~ Ll tr ~ 2.5 small-amplitude oscillations with twice the frequency 
occur. Higher harmonics are suppressed by noise (/3 = 20). 

time, i.e., A(x, t) = A(x), then an exact reduction is possible. The result IS a 
fixed-point equation (Gerstner and van Hemmen 1992) 

q q 

A(x) = f[Jo L L Q~lIpost(X~) L pre(zll)p(z)A(z)] (15) 
~=lll=l z 

where 

f[h,yn] = {J.oo dsexp{- 1.' r- 1[h,yn + ~"J(8')]ds'}} -1 (16) 

is the mean firing rate (9) of a typical neuron stimulated by a synaptic input h3yn. 

Constant activities correspond to incoherent, stationary firing and in this case a 
rate code is sufficient; cf. Fig. 2. 

Two points should, however, be kept in mind. First, a stationary state of incoherent 
firing is not necessarily stable. In fact, in a noise-free system the stationary state 
is always unstable and oscillations build up (Gerstner and van Hemmen 1993). In 
a system with noise, the stability depends on the noise level f3 and the delay Ll tr of 
axonal and synaptic transmission (Gerstner and van Hemmen 1994). This is shown 
in Fig. 3 where the delay Ll tr has been increased every 100 ms. The frequency of 
the small-amplitude oscillation around the stationary state is approximately equal 
to the mean firing rate (16) in the stationary state or higher harmonics thereof. 
A small-amplitude oscillation corresponds to partially synchronized activity. Note 
that for Ll tr = 4 ms a large-amplitude oscillation builds up. Here all neurons fire in 
nearly perfect synchrony; cf. Fig. 4. In the noiseless case f3 - 00, the oscillations 
period of such a collective or 'locked' oscillation can be found from the threshold 
condition 

T", = inf {s I 0 = ~"J (8) + Jo ~ f(nS)} . (17) 

In most cases the contribution with n = 1 is dominant which allows a simple graph­
ical solution. The first intersection of the effective threshold () - TJref (s) with the 
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weighted EPSP JOf( s) yields the oscillation period; cf. Fig 1. An analytical argu­
ment shows that locking is stable only if ;" dTooc > 0 (Gerstner and van Hemmen 
1993). 
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Fig. 4 
Oscillatory activity (coherent 
firing). In this case a descrip­
tion by firing rates must be com­
bined with a description by en­
semble activities. (a) Ensemble 
averaged activity A(x, t). (b) 
Spike raster of 30 neurons out 
of a network of 4000. (c) Time­
averaged mean firing rate f. In 
this simulation, we have used 
Ll tr = 4 ms and f3 = 8. 

Second, even if the incoherent state is stable and attractive, there is always a transi­
tion time before the stationary state is assumed. During this time, a rate description 
is insufficient and we have to go back to the full dynamic equations (12) - (14). Sim­
ilarly, if neurons are subject to a fast time-dependent external stimulus, a rate code 
fails . 

5.3 SPIKE CODE 

A superficial inspection of Eqs. (12) - (14) gives the impression that all information 
about neuronal spiking has disappeared. This is, however, false. The term A(x, t-s) 
in (13) denotes all neurons with 'identity card' x that have fired at time t-s . The 
integration kernel in (13) is the conditional probability that one of these neurons 
fires again at time t. Keeping t - s fixed and varying t we get the distribution 
of inter-spike intervals for neurons in L(x). Thus information on both spikes and 
intervals is contained in (13) and (14). 

We can make use of this fact, if we consider network states where in every time step a 
different assembly is active. This leads to a spatia-temporal spike pattern as shown 
in Fig. 5. To transform a specific spike pattern into a stable state of the network 
we can use a Hebbian learning rule. However, in contrast to the standard rule, a 
synapse is strenthened only if pre- and postsynaptic activity occurs simultaneously 
within a time window of a few ms (Gerstner et al. 1993). Note that in this case, 
averaging over time or space spoils the information contained in the spike pattern. 

5.4 CONCLUSIONS 

Equations . (12) - (14) show that in our large and fully connected network an 
ensemble code with an appropriately chosen ensemble is sufficient. If, however, the 
efficacies (11) and the connection scheme become more involved, the construction 
of appropriate ensembles becomes more and more difficult. Also, in a finite network 
we cannot make use of the law of large number in defining the activities (10). Thus, 
in general, we should always start with a network model of spiking neurons. 
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Fig. 5 
Spatio-temporal spike pattern. 
In this case, neither firing rates 
nor locally averaged activities 
contain enough information to 
describe the state of the net­
work. (a) Ensemble averaged 
activity A(t). (b) Spike raster of 
30 neurons out of a network of 
4000. ( c) Time-averaged mean 
firing rate f. 
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