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Abstract 

Training classifiers on large databases is computationally demand­
ing. It is desirable to develop efficient procedures for a reliable 
prediction of a classifier's suitability for implementing a given task, 
so that resources can be assigned to the most promising candidates 
or freed for exploring new classifier candidates. We propose such 
a practical and principled predictive method. Practical because it 
avoids the costly procedure of training poor classifiers on the whole 
training set, and principled because of its theoretical foundation. 
The effectiveness of the proposed procedure is demonstrated for 
both single- and multi-layer networks. 

1 Introd uction 

Training classifiers on large data.bases is computationally demanding. It is desirable 
to develop efficient procedures for a reliable prediction of a classifier's suitability 
for implementing a given task. Here we describe such a practical and principled 
predictive method. 

The procedure applies to real-life situations with huge databases and limited re­
sources. Classifier selection poses a problem because training requires resources -
especially CPU-cycles, and because there is a combinatorical explosion of classifier 
candidates. Training just a few of the many possible classifiers on the full database 
might take up all the available resources, and finding a classifier particular suitable 
for the task requires a search strategy. 
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Figure 1: Test errors as a function of the size of the training set for three different 
classifiers. A classifier choice based on best test error at training set size 10 = 10,000 
will result in an inferior classifier choice if the full database contains more than 
15,000 patterns. 

The naive solution to the resource dilemma is to reduce the size of the database to 
1 = 10 , so that it is feasible to train all classifier candidates. The performance of the 
classifiers is estimated from an independently chosen test set after training. This 
makes up one point for each classifier in a plot of the test error as a function of the 
size 1 of the training set. The naive search strategy is to keep the best classifier at 
10 , under the assumption that the relative ordering of the classifiers is unchanged 
when the test error is extrapolated from the reduced size 10 to the full database size. 
Such an assumption is questionable and could easily result in an inferior classifier 
choice as illustrated in Fig. 1. 

Our predictive method also utilizes extrapolation from medium sizes to large sizes 
of the training set, but it is based on several data points obtained at various sizes 
of the training set in the intermediate size regime where the computational cost of 
training is low. A change in the representation of the measured data points is used 
to gain confidence in t.he extrapolation. 

2 A Predictive Method 

Our predictive method is based on a simple modeling of the learning curves of a 
classifier. By learning curves we mean the expectation value of the test and training 
errors as a function of the training set size I. The expectat.ion value is taken over 
all the possible ways of choosing a training set of a given size. 

A typical example of learning curves is shown in Fig. 2. The test error is always 
larger than the training error, but asymptotically t.hey reach a common value, a. 
We model the errors for large siz€'s of the training s€'t as power-law decays to the 
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Figure 2: Learning curves for a typical classifier. For all finite values of the 
training set size I the test error is larger t han the training error. Asymptotically 
they converge to the same value a. 

asymptotic error value, a: 

b 
['test = a + ler and 

c 
['train = a - 1i3 

where I is the size of the training set, and a and f3 are positive exponents. From 
these two expressions the sum and difference is formed: 

['test + ['train 
b c 

2a + ler - 1i3 

b c 
ler + 1i3 ['test - ['train 

If we make the assumption 0'= f3 and b = c the equation (1) and (2) reduce to 

['test + [train 2a 

[test - [train 
2b 
ler 

(1) 

(2) 

(3) 

These expressions suggest a log-log representation of the sum and difference of the 
test and training errors as a function of the the training set size I, resulting in 
two straight lines for large sizes of the training set: a constant "-' log(2a) for the 
sum, and a straight line with slope -a and intersection log(b + c) "-' log(2b) for the 
difference, as shown in Fig. 3. 

The assumption of equal amplitudes b = c of the two convergent terms is a conve­
nient but not crucial simplification of the model. \Ve find experimentally that for 
classifiers where this approximation does not hold, the difference ['test - ['train 
still forms a straight line in a log-log-plot. From this line the sum s = b + c 
can be extracted as the intersection, as indicated on Fig. 3. The weighted sum 
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Figure 3: Within the validity of the power-law modeling of the test and training 
errors, the sum and difference between the two errors as a function of training set 
size give two straight lines in a log-log-plot: a constant"" log(2a) for the sum, and a 
straight line with slope -0' and intersection log(b + c) ,..., log(2b) for the difference. 

c . Etest + b . Etrain will give a constant for an appropriate choice of band c, with 
b + c = s. 

The validity of the above model was tested on numerous boolean classifiers with 
linear decision surfaces. In all experiments we found good agreement with the model 
and we were able to extract reliable estimates of the three parameters needed to 
model the learning curves: the asymptotic value a, and the power 0', and amplitude 
b of the power-law decay. An example is shown in Fig. 4, (left). The considered 
task is separation of handwritten digits 0-4 from the digits 5-9. This problem is 
unrealizable with the given database and classifier. 

The simple modeling of the test and training errors of equation (3) is only assumed 
to hold for large sizes of the training set, but it appears to be valid already at 
intermediate sizes, as seen in Fig. 4, (left). The predictive model suggested here is 
based on this observation, and it can be illustrated from Fig. 4, (left): with test 
and training errors measured for I ~ 2560 it is possible to estimate the two straight 
lines, extract approximate values for the three parameters which characterize the 
learning curves, and use the resulting power-laws to extrapolate the learning curves 
to the full size of the database. 

The algorithm for the predictive method is therefore as follows: 

1. Measure Etest and Etrain for intermediate sizes of the training set. 

2. Plot 10g(Etest + Etrain) and 10g(Etest - Etrain) versus log I. 

3. Estimate the two straight lines and extract the asymptotic value a 
the amplitude b, and the exponent 0'. 

4. Extrapolate the learning curves to the full size of the database. 
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Left: Test of the model for a 256 dimensional boolean classifier trained by minimiz­
ing a mean squared error. The sum and difference of the test and training errors 
are shown as a function of the normalized training set size in a log-log-plot (base 
10). Each point is the mean with standard deviation for ten different choices of a 
training set of the given size. The straight line with a = 1, corresponding to a 1/1 
decay, is shown as a reference. 
Right: Prediction of learning curves for a 256 dimensional boolean classifier trained 
by minimizing a mean squared error. Measured errors for training set size of 
I ~ 2560 are used to fit the two proposed straight lines in a log-log plot. The 
three parameters which characterize the learning curves are extracted and used for 
extrapolation. 

A prediction for a boolean classifier with linear decision surface is illustrated in 
Fig. 4, (right). The prediction is excellent for this type of classifiers because the 
sum and difference of the test and training errors converge quickly to two straight 
lines in a log-log-plot. Unfortunately, linear decision surfaces are in general not 
adequate for many real-life applications. 

The usefulness of the predictive method proposed here can be judged from its per­
formance on real-life sophisticated multi-layer networks. Fig. 5 demonstrates the 
validity of the model even for a fully-connected multi-layer network operating in its 
non-linear regime to implement an unrealizable digit recognition task. Already for 
intermediate sizes of the training set the sum and difference between the test and 
training errors are again observed to follow straight lines. 

The predictive method was finally tested on sparsely connected multi-layer net­
works. Fig. 6, (left), shows the test and training errors for two networks trained 
for the recognition of handwritten digits. The network termed "old" is commonly 
referred to as LeNet [LCBD+90]. The network termed "new" is a modification of 
LeN et with additional feature maps. The full size of the database is 60,000 patterns, 
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Figure 5: Test of the model for a fully-connected 100-10-10 network. The sum 
and the difference of the test and training error are shown as a function of the 
normalized training set size in a log-log-plot. Each point is the mean with standard 
deviation for 20 different choices of a training set of the given size. 

a 50-50 % mixture of the NIST1 training and test sets. 

After training on 12,000 patterns it becomes obvious that the new network will out­
perform the old network when trained on the full database, but we wish to quantify 
the expected improvement. If our predictive method gives a good quantitative 
estimate of the new network's test error at 60,000 patterns, we can decide whether 
three weeks of training should be devoted to the new architecture. 

A log-log-plot based on the three datapoints from the new network result in values 
for the three parameters that determine the power-laws used to extrapolate the 
learning curves of the new network to the full size of the database, as illustrated in 
Fig. 6, (right). The predicted test error at the full size of the database I = 60,000 
is less than half of the test error for the old architecture, which strongly suggest 
performing the training on the full database. The result of the full training is also 
indicated in Fig. 6, (right). The good agreement between predicted and measured 
values illustrates the power and applicability of the predictive method proposed 
here to real-life applications. 

3 Theoretical Foundation 

The proposed predictive method based on power-law modeling of the learning curves 
is not just heuristic. A fair amount of theoretical work has been done within the 
framework of statistical mechanics [SST92] to compute learning curves for simple 
classifiers implementing unrealizable rules with non-zero asymptotic error value. A 
key assumption of this theoretical approach is that the number of weights in the 
network is large. 

1 National Institute for Standards and Technology, Special Database 3. 
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Left: Test (circles) and training ( triangles) errors for two networks. The "old" net­
work is what commonly is referred to as LeNet. The network termed "new" is a 
modification of LeNet with additional feature maps. The full size of the database 
is 60,000 patterns, and it is a 50-50 % mixture of the NIST training and test set. 
Right: Test (circles) and training (triangles) errors for the new network. The figure 
shows the predicted values of the learning curves in the range 20,000 - 60,000 train­
ing patterns for the "new" network, and the actually measured values at 60,000 
patterns. 

The statistical mechanical calculations support a symmetric power-law decay of the 
expected test and training errors to their common asymptotic value. The power­
laws describe the behavior in the large I regime, with an exponent a which falls in 
the interval 1/2 ~ a ~ 1. Our numerical observations and modeling of the test and 
training errors are in agreement with these theoretical predictions. 

We have, moreover, observed a correlation between the exponent a and the asymp­
totic error value a not accounted for by any of the theoretical models considered so 
far. Fig. 7 shows a plot of the exponent a versus the asymptotic error a evaluated 
for three different tasks. It appears from this data that the more difficult the target 
rule, the smaller the exponent, or the slower the learning. A larger generalization 
error for intermediate training set sizes is in such cases due to the combined effect 
of a larger asymptotic error and a slower convergence. Numerical results for classi­
fiers of both smaller and larger input dimension support the explanation that this 
correlation might be due to the finite size of the input dimension of the classifier 
(here 256). 

4 Summary 

In this paper we propose a practical and principled method for predicting the suit­
ability of classifiers trained on large databases. Such a procedure may eliminate 



334 Cortes, Jackel, Solla, Vapnik, and Denker 

exponent, 
(X. 

0.9 • 
0.8 ~I 
0.7 0. 

0.6 
0 0.1 0.2 asymptotic 

error, a 

Figure 1: Exponent of extracted power-law decay as a function of asymptotic 
error for three different tasks. The un-realizability of the tasks, as characterized by 
the asymptotic error a, can be changed by tuning the strength of a weight-decay 
constraint on the norm of the weights of the classifier. 

poor classifiers at an early stage of the training procedure and allow for a more 
intelligent use of computational resources. 

The method is based on a simple modeling of the expected training and test errors, 
expected to be valid for large sizes of the training set. In this model both er­
ror measures are assumed to follow power-law decays to their common asymptotic 
error value, with the same exponent and amplitude characterizing the power-law 
convergence. 

The validity of the model has been tested on classifiers with linear as well as non­
linear decision surfaces. The free parameters of the model are extracted from data 
points obtained at medium sizes of the training set, and an extrapolation gives good 
estimates of the test error at large size of the training set. 

Our numerical studies of learning curves have revealed a correlation between the 
exponent of the power-law decay and the asymptotic error rate. This correlation is 
not accounted for by any existing theoretical models, and is the subject of continuing 
research. 
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