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Abstract 

We present an algorithm for the training of feedforward and recur­
rent neural networks. It detects internal representation conflicts 
and uses these conflicts in a constructive manner to add new neu­
rons to the network . The advantages are twofold: (1) starting with 
a small network neurons are only allocated when required; (2) by 
detecting and resolving internal conflicts at an early stage learning 
time is reduced. Empirical results on two real-world problems sub­
stantiate the faster learning speed; when applied to the training 
of a recurrent network on a well researched sequence recognition 
task (the Reber grammar), training times are significantly less than 
previously reported . 

1 Introduction 

Selecting the optimal network architecture for a specific application is a nontrivial 
task, and several algorithms have been proposed to automate this process. The 
first class of network adaptation algorithms start out with a redundant architecture 
and proceed by pruning away seemingly unimportant weights (Sietsma and Dow, 
1988; Le Cun et aI, 1990). A second class of algorithms starts off with a sparse 
architecture and grows the network to the complexity required by the problem. 
Several algorithms have been proposed for growing feedforward networks. The 
upstart algorithm of Frean (1990) and the cascade-correlation algorithm of Fahlman 
(1990) are examples of this approach. 
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The cascade correlation algorithm has also been extended to recurrent networks 
(Fahlman, 1991), and has been shown to produce good results. The recurrent 
cascade-correlation (RCC) algorithm adds a fully connected layer to the network 
after every step, in the process attempting to correlate the output of the additional 
layer with the error. In contrast, our proposed algorithm uses the statistical prop­
erties of the weight adjustments produced during batch learning to add additional 
units. 

The RCC algorithm will be used as a baseline against which the performance of 
our method will be compared. In a recent paper, Chen et al (1993) presented an 
algorithm which adds one recurrent neuron with small weights every N epochs. 
However, no significant improvement in training speed was reported over training 
the corresponding fixed size network, and the algorithm will not be further analyzed. 
To the authors knowledge little work besides the two mentioned papers have applied 
constructive algorithms to recurrent networks. 

In the majority of our empirical studies we have used partially recurrent neural 
networks, and in this paper we will focus our attention on such networks. The mo­
tivation for the development of this algorithm partly stemmed from the long training 
times experienced with the problems of phoneme and word recognition from contin­
uous speech. However, the algorithm is directly applicable to feedforward networks. 
The same criteria and method used to add recurrent neurons to a recurrent network 
can be used for adding neurons to any hidden layer of a feed-forward network. 

2 Architecture 

In a standard feedforward network, the outputs only depend on the current inputs, 
the network architecture and the weights in the network. However, because of the 
temporal nature of several applications, in particular speech recognition, it might 
be necessary for the network to have a short term memory. 

Partially recurrent networks, often referred to as Jordan (1989) or Elman (1990) 
networks, are well suited to these problems. The architecture examined in this 
paper is based on the work done by Robinson and Fallside (1991) who have applied 
their recurrent error propagation network to continuous speech recognition. 

A common feature of all partially recurrent networks is that there is a special set 
of neurons called context units which receive feedback signals from a previous time 
step. Let the values of the context units at time t be represented by C(t). During 
normal operation the input vector at time t are applied to the input nodes I(t), and 
during the feedforward calculation values are produced at both the output nodes 
O(t + 1) and the context units C(t + 1). The values of the context units are then 
copied back to the input layer for use as input in the following time step. 

Several training algorithms exist for training partially recurrent neural networks, 
but for tasks with large training sets the back-propagation through time (Werbos, 
1990) is often used. This method is computationally efficient and does not use 
any approximations in following the gradient. For an application where the time 
information is spread over T. input patterns, the algorithm simply duplicates the 
network T times - which results in a feedforward network that can be trained by a 
variation of the standard backpropagation algorithm. 
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3 The Algorithm 

For partially recurrent networks consisting of input, output and context neurons, 
the following assertions can be made: 

• The role of the context units in the network is to extract and store all 
relevant prior information from the sequence pertaining to the classification 
problem. 

• For weights entering context units the weight update values accumulated 
during batch learning will eventually determine what context information 
is stored in the unit (the sum of the weight update values is larger than the 
initial random weights). 

• We assume that initially the number of context units in the network is 
insufficient to implement this extraction and storage of information (we 
start training with a small network). Then, at different moments in time 
during the recognition of long temporal sequences, a context unit could be 
required to preserve several different contexts. 

• These conflicts are manifested as distinct peaks in the distribution of the 
weight update values during the epoch. 

All but the last fact follows directly from the network architecture and requires no 
further elaboration. The peaks in the distribution of the weight update values are a 
result of the training algorithm attempting to adjust the value of the context units in 
order to provide a context value that will resolve short-term memory requirements. 

After the algorithm had been developed, it was discovered that this aspect of the 
weight update values had been used in the past by Wynne-Jones (1992) and in 
the Meiosis Networks of Hanson (1990). The method of Wynne-Jones (1992) in 
particular is very closely related; in this case principal component analysis of the 
weight updates and the Hessian matrix is used to detect oscillating nodes in fully 
trained feed-forward networks. This aspect of backpropagation training is fully 
discussed in Wynne-Jones (1992), to which reader is referred for further details. 

The above assertions lead to the proposed training algorithm, which states that if 
there are distinct maxima in the distribution of weight update values of the weights 
entering a context unit, then this is an indication that the batch learning algorithm 
requires this context unit for the storage of more than one context. 

If this conflict can be resolved, the network can effectively store all the contexts 
required, leading to a reduction in training time and potentially an increase III 

performance. 

The training algorithm is given below (the mode of the distribution is defined as 
the number of distinct maxima): 

For all context units { 
Set N = modality ot the distribution ot weight update values; 
It N > 1 then { 

Add N-1 new context units to the network which are identical 
(in terms ot weighted inputs) to the current context unit. 
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} 
} 

Adjust each of these N context units (including the 
original) by the weight update value determined by each 
maxima (the average value of the mode). 

Adjust all weights leaving these N context units so that the 
addition of the new units do not affect any subsequent layers 
(division by N). This ensures that the network retains all 
previously acquired knowledge. 

The main problem in the implementation of the above algorithm is the automatic 
detection of significant maxima in the distribution of weight updates. A standard 
statistical approach for the determination of the modality (the number of maxima) 
of a distribution of noisy data is to fit a curve of a certain predetermined order to 
the data. The maxima (and minima) are then found by setting the derivative to 
zero. This method was found to be unsuitable mainly because after curve fitting it 
was difficult to determine the significance of the detected peaks. 

It was decided that only instances of bi-modality and tri-modality were to be iden­
tified, each corresponding to the addition of one or two context units. The following 
heuristic was constructed: 

• Calculate the mean and standard deviation of the weight update values. 

• Obtain the maximum value in the distribution. 

• If there are any peaks larger than 60% of the maxima outside one standard 
deviation of the mean, regard this as significant. 

This heuristic provided adequate identification of the modalities. The distribution 
was divided into three areas using the mean ± the standard deviation as boundaries. 
Depending on the number of maxima detected, the average within each area is used 
to adjust the weights. 

4 Discussion 

According to our algorithm it follows that if at least one weight entering a context 
unit has a multi-modal distribution, then that context unit is duplicated. In the 
case where multi-modality is detected in more than one weight, context units were 
added according to the highest modality. 

Although this algorithm increases the computational load during training, the stan­
dard deviation of the weight updates rapidly decreases as the network converges. 
The narrowing of the distribution makes it more difficult to determine the modal­
ity. In practice it was only found useful to apply the algorithm during the initial 
training epochs, typically during the first 20. 

During simulations in which strong multi-modalities were detected in certain nodes, 
frequently the multi-modalities would persist in the newly created nodes. In this 
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manner a strong bi-modality would cause one node to split into two, the two nodes 
to grow to four, etc. This behaviour was prevented by disabling the splitting of 
a node for a variable number of epochs after a multi-modality had been detected. 
Disabling this behaviour for two epochs provided good results. 

5 Simulation Results 

The algorithm was evaluated empirically on two different tasks: 

• Phoneme recognition from continuous multi-speaker speech usmg the 
TIMIT (Garofolo, 1988) acoustic-phonetic database . 

• Sequence Recognition: Learning a finite-state grammar from examples of 
valid sequences. 

For the phoneme recognition task the algorithm decreased training times by a factor 
of 2 to 10, depending on the size of the network and the size of the training set. 

The sequence recognition task has been studied by other researchers in the past, no­
tably Fahlman (1991). Fahlman compared the performance of the recurrent cascade 
correlation (RCC) network with that of previous results by Cleeremans et al (1989) 
who used an Elman (1990) network. It was concluded that the RCC algorithm 
provides the same or better performance than the Elman network with less training 
cycles on a smaller training set. Our simulations have shown that the recurrent 
error propagation network of Robinson and Fallside (1991), when trained with our 
constructive algorithm and a learning rate adaptation heuristic, can provide the 
same performance as the RCC architecture in 40% fewer training epochs using a 
training set of the same size. The resulting network has the same number of weights 
as the minimum size RCC network which correctly solves this problem. 

Constructive algorithms are often criticized in terms of efficiency, i.e. "Is the in­
crease in learning speed due to the algorithm or just the additional degrees of 
freedom resulting from the added neuron and associated weights?". To address this 
question several simulations were conducted on the speech recognition task, com­
paring the performance and learning time of a network with N fixed context units 
to that of a network with small number of context units and growing a network 
with a maximum of N context units. Results indicate that the constructive algo­
rithm consistently trains faster, even though both networks often have the same 
final performance. 

6 Summary 

In this paper the statistical properties of the weight update values obtained during 
the training of a simple recurrent network using back-propagation through time 
have been examined. An algorithm has been presented for using these properties to 
detect internal representation conflicts during training and to use this information 
to add recurrent units to the network. Simulation results show that the algorithm 
decreases training time compared to networks which have a fixed number of context 
units. The algorithm has not been applied to feedforward networks, but can III 

principle be added to all training algorithms that operate in batch mode. 
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