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Abstract 
Integrated Mean Squared Error (IMSE) is a version of the usual 
mean squared error criterion, averaged over all possible training 
sets of a given size. If it could be observed, it could be used 
to determine optimal network complexity or optimal data sub­
sets for efficient training. We show that two common methods of 
cross-validating average squared error deliver unbiased estimates 
of IMSE, converging to IMSE with probability one. These esti­
mates thus make possible approximate IMSE-based choice of net­
work complexity. We also show that two variants of cross validation 
measure provide unbiased IMSE-based estimates potentially useful 
for selecting optimal data subsets. 

1 Summary 

To begin, assume we are given a fixed network architecture. (We dispense with 
this assumption later.) Let zN denote a given set of N training examples. Let 
QN(zN) denote the expected squared error (the expectation taken over all possible 
examples) of the network after being trained on zN. This measures the quality of 
fit afforded by training on a given set of N examples. 

Let IMSEN denote the Integrated Mean Squared Error for training sets of size 
N. Given reasonable assumptions, it is straightforward to show that IMSEN = 
E[Q N(ZN)] - 0"2, where the expectation is now over all training sets of size N, ZN 
is a random training set of size N, and 0"2 is the noise variance. 

Let CN = CN(zN) denote the "delete-one cross-validation" squared error measure 
for a network trained on zN. CN is obtained by training networks on each of the N 
training sets of size N -1 obtained by deleting a single example; the measure follows 
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by computing squared error for the corresponding deleted example and averaging the 
results. Let G N,M = G N,M (zN , zM) denote the "generalization" measure obtained 
by separating the available data of size N + M into a training set zN of size N, and 
a validation ("test") set zM of size M; the measure follows by training on zN and 
computing averaged squared error over zM. 

We show that eN is an unbiased estimator of E[QN_l(ZN)], and hence, estimates 
1M SEN-l up to noise variance. Similarly, GN,M is an unbiased estimator of 
E[QN(ZN, ZM] . Given reasonable conditions on the estimator and on the data 
generating process we demonstrate convergence with probability 1 of GN,M and 
eN to E[QN(ZN)] as Nand M grow large. 

A direct consequence of these results is that when choice is restricted to a set of 
network architectures whose complexity is bounded above a priori, then choosing 
the architecture for which either eN (or G N,M) is minimized leads to choice of 
the network for which 1MSEN is nearly minimized for all N (respectively, N, M) 
sufficiently large. 

We also provide results for training sets sampled at particular inputs. Conditional 
1M S E is an appealing criterion for evaluating a particular choice of training set in 
the presence of noise. These results demonstrate that delete-one cross-validation es­
timates average MSE (the average taken over the given set of inputs,) and that hold­
out set cross-validation gives an unbiased estimate of E[QN(ZN)IZN = (xN , yN)], 
given a set of N input values xN for which corresponding (random) output values 
yN are obtained. Either cross-validation measure can therefore be used to select 
a representative subset of the entire dataset that can be used for data compaction, 
or for more efficient training (as training can be faster on smaller datasets) [4]. 

2 Definitions 
2.1 Learning Task 

We consider the learning task of determining the relationship between a random 
vector X and a random scalar y, where X takes values in a subset X of ~r, and Y 
takes values in a subset Y of~. (e.g. X = ~r and Y = ~). We refer to X as the 
input space. The learning task is thus one of training a neural network with r inputs 
and one output. It is straightforward to extend the following analysis to networks 
with multiple targets. We make the following assumption on the observations to be 
used in the training of the networks. 

Assumption 1 X is a Borel subset of ~r and Y is a Borel subset of~. Let Z = 
X x Y and n = Zoo = Xi:1Z. Let (n,.1', P) be a probability space with.1' = 8(n). 
The observations on Z = (X', Y)' to be used in the training of the network are a 
realization of an i.i.d. stochastic process {Z, _ (Xi, Yi)' : n ---+ X x V}. 

When wEn is fixed, we write z, = Z,(w) for each i = 1,2, .... Also write ZN = 
(Zl, ... ,ZN) and zn = (Zl, .. . ,zn). 

Assumption 1 allows uncertainty caused by measurement errors of observations 
as well as a probabilistic relationship between X and Y . It, however, does not 
prevent a deterministic relation ship between X and Y such that Y = g(X) for 
some measurable mapping g : ~r ---+ ~. 
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We suppose interest attaches to the conditional expectation of Y given X, written 
g( x) = E(Y IX). The next assumption guarantees the existence of E(Yi IXi) and 
E(cdXi), Ci = Yi - E(YiIXi). Next, for convenience, we assume homoscedasticity 
of the conditional variance of Yi given Xi. 

Assumption 2 E(y2) < 00. 

Assumption 3 E(ci IX1) = u 2, where u 2 is a strictly positive constant. 

2.2 Network Model 

Let fP(.,.) : X X WP -- Y be a network function with the "weight space" WP, 
where p denotes the dimension of the "weight space" (the number of weights.) We 
impose some mild conditions on the network architecture. 

Assumption 4 For each p E {I, 2, ... ,p}, pEN, WP is a compact subset of ~P, 
and fP : X x WP -- ~ satisfies the following conditions: 

1. fP(., w) : X -- Y is measurable for each wE WP; 

2. fP(x,·) : WP -- Y is continuous for all x E X. 

We further make a joint assumption on the underlying data generating process 
and the network architecture to assure that the training dataset and the networks 
behaves appropriately. 

Assumption 5 There exists a function D : X -- ~+ = [0,00) such that for each 
x E X and w E WP, IfP(x, w)1 ~ D(x), and E [(D(X»2] < 00. 

Hence, fP is square integrable for each wP E WP. We will measure network per­
formance using mean squared error, which for weights wP is given by ).(wP;p) = 
E [(Y - fP(X, wP)2]. The optimal weights are the weights that minimize ).(wP;p). 
The set of all optimal weights are given by WP· = {w· E WP : ).( w· ; p) ~ 
).( w; p) for any w E Wp}. The index of the best network is p. , given by the smallest 
p minimizing minwl'Ewl' ).(wP;p), p E {I, 2, ... ,pl. 
2.3 Least-Squares Estimator 

When assumptions I and 4 hold, the nonlinear least-squares estimator exists. For­
mally, we have 

Lemma 1 Suppose that Assumptions 1 and 4 hold. Then 1. For each N EN, 
there exists a measurable function INC; p) : ZN -- WP such that IN(ZN; p) solves 

the following problem with probability one: minwEWI' N- 1 E~l (Yi - J(Xi, w»2 . 
2. ).(.; p) : WP __ ~ is continuous on WP, and WP· is not empty. 

For convenience, we also define ~ : n -- WP by ~(w) = IN(ZN (w);p) for 
each wEn. Next let i1 , i2 , •.. , iN be distinct natural numbers and let ZN = 
(Zil' ... , ZiN)" Then IN(ZN) given above solves ;; Ef=l (Yi; - f(Xi;, wP»2 with 
probability one. In particular, we will consider the estimate using the dataset Z~i 
made by deleting the ith observation from zN. Let Z~i be a random matrix made 
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by deleting the ith row from ZN. Thus, IN -1 (Z~i; p) is a measurable least squares 
estimator and we can consider its probabilistic behavior. 

3 Integrated Mean Squared Error 

Integrated Mean Squared Error (IMSE) has been used to regulate network complex­
ity [9]. Another (conditional) version of IMSE is used as a criterion for evaluating 
training examples [5, 6, 7, 8]. The first version depends only on the sample size, 
not the particular sample. The second (conditional) version depends additionally 
upon the observed location of the examples in the input space. 

3.1 Unconditional IMSE 

The (unconditional) mean squared error (MSE) of the network output at a partic­
ular input value x is 

MN(X;p)=E [{g(x)-!(x,IN(ZN;p))}2]. (1) 

Integrating MSE over all possible inputs gives the unconditional IMSE: 

IMSEN(p) J [MN(X, ;p)] J.L(dx) (2) 

E [MN(XjP)], (3) 

where J.L is the input distribution. 

3.2 Conditional IMSE 

To evaluate exemplars obtained at inputs x N , we modify Equation (1) by condi­
tioning on x N , giving 

MN(xlxN ;p) = E [{g(x) - !(x, IN(ZN))PIXN = xN] . 

The conditional IMSE (given inputs xN ) is then 

IMSEN(xN;p) J MN(xlxN;p)JL(dx) 

E [MN(XlxN;p)] . 

4 Cross-Validation 

(4) 

(5) 

Cross-validatory measures have been used successfully to assess the performance of 
a wide range of estimators [10, 11, 12, 13, 14, 15]. Cross-validatory measures have 
been derived for various performance criteria, including the Kullback-Liebler Infor­
mation Criterion (KLIC) and the Integrated Squared Error (ISE, asymptotically 
equivalent to IMSE) [16]. Although provably inappropriate in certain applications 
[17, 18], optimality and consistency results for the cross-validatory measures have 
been obtained for several estimators, including linear regression, orthogonal series, 
splines, histograms, and kernel density estimators [16, 19,20, 21, 22, 23, 24]. The 
authors are not aware of similar results applicable to neural networks, although two 
more general, but weaker results do apply [26]. A general result applicable to neural 
networks shows asymptotic equivalence between cross-validation and Akaike's Cri­
terion for network selection [25,29]' as well as between cross-validation and Moody's 
Criterion [30, 29]. 



Cross-Validation Estimates IMSE 395 

4.1 Expected Network Error 

Given our assumptions, we can relate cross-validation to IMSE. For clarity and 
notational convenience, we first introduce a measure of network error closely related 
to IMSE. For each weight wP E WP, we have defined the mean squared error A( wP ; p) 
in Section 2.2. We define QN to map each dataset to the mean squared error of the 
estimated network 

QN(ZN;p) = A(lN(zN;p);p). 

When Assumption 3 holds, we have 

A(wP;p) = E [(g(X) - f(X, WP ))2] + u2 

= E [(g(XN+d - f(XN+l, wP))2] + u2 

as is easily verified. We therefore have 

QN(zN; p) = E [(g(XN+d - f(XN+l, IN(ZN ;p)))2IZN = zN] + u2. 

Thus, by using the law of iterated expectations, we have 
E[QN(ZN;p)] = IMSEN(p)+u2. 

Likewise, given x N E X N , 

E[QN(ZN; p)IXN = xN] = IMSE(xN ;p) + u2. 

4.2 Cross-Validatory Estimation of Error 

(6) 

In practice we work with observable quantities only. In particular, we must esti­
mate the error of network p over novel data ("generalization") from a finite set of 
examples. Such an estimate is given by the delete-one cross-validation measure: 

N 

CN(zN;p) = ~ L (Yi - f(Xi,IN_l(zl!i;P)))2 (7) 
i=l 

~ere zl!i, denotes the training set obtained by deleting the ith example. Using 
z_i insteaa of z avoids a downward bias due to testing upon examples used in 
training, as we show below (Theorem 3.) Another version of cross-validation is 
commonly used for evaluating "generalization" when an abundant supply of novel 
data is available for use as a "hold-out" set: 

M 

GN,M(zN,zM;p) = ~ L (iii - J(xi,IN(zN;p)))2, 
i=l 

(8) 

where zM = (ZN+l' ... , ZN+M)' 

5 Expectation of the Cross-Validation Measures 

We now consider the relation between cross-validation measure and IMSE. We ex­
amine delete-one cross-validation first. 

Proposition 1 (Unbiasedness of CN) Let Assumptions 1 through 5 hold. Then 
for given N, CN is an unbiased estimator of 1M SEN-l (p) + u2 : 

E [CN(ZN;p)] = IMSEN-1(p) +u2. (9) 
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With hold-out set cross-validation, the validation set ZM gives i.i.d. information 
regarding points outside of the training set ZN. 

Proposition 2 (Unbiasedness of GN,M) Let Assumptions 1 through 5 hold. Let 

ZM = (ZN+l, .. . ,ZM)'. Then for given Nand M, GN,M is an unbiased estimator 
of IMSEN(p) + u 2 : 

[ N -M ] 2 E GN,M(Z , Z ;p) = IMSEN(p) + u . (10) 

The latter result is appealing for large M, N. We expect delete-one cross-validation 
to be more appealing when training data is not abundant. 

6 Expectation of Cross-Validation when Sampling at 
Selected Inputs 

We obtain analogous results for training sets obtained by sampling at a given set 
of inputs x N . We first consider the result for delete-one cross-validation. 

Proposition 3 (Expectation of CN given xN1 Let Assumptions 1 through 5 
hold. Then, given a particular set of inputs, x , CN is an unbiased estimator 
of average MSEN-l + u2 , the average taken over x N : 

N 

1 " (I N . 2 N L.J M N - 1 Xi x_i' p) + u , 
i=l 

where X~i is a matrix made by deleting the ith row of x N • 

This essentially gives an estimate of MSEN-l limited to x E x N , losing a degree of 
freedom while providing no estimate of the M S E off of the training points. For this 
average to converge to IMSEN-l, it will suffice for the empirical distribution of 
x N , p,N, to converge to J-lN, i.e ., P,N => J-lN. We obtain a stronger result for hold-out 
set cross-validation. The hold-out set gives independent information on M SEN off 
of the training points, resulting in an estimate of IMSEN for given x N . 

Proposition 4 (Expectation of GN,M given x N ) Let Assumptions 1 through 5 

hold. Let ZM = (ZN+1, .. . , ZN+M )'. Then, given a particular set of inputs, x N , 
GN,M is an unbiased estimator of of IMSEN(xN ; p) + u 2 : 

E [GN,M(ZN,ZM;p)IXN =xN] IMSEN(xN;p) +u2 • 

7 Strong Convergence of Hold-Out Set Cross-Validation 

Our conditions deliver not only unbiasedness, but also convergence of hold-out set 
cross-validation to IMSEN, with probability 1. 

Theorem 1 (Convergence of Hold-Out Set w.p. 1) Let Assump­

tions 1 through 5 hold. Also let ZM = (ZN+l, ... , ZN+M)'. If for some A > 0 
a sequence {MN} of natural numbers satisfies MN > AN for any N = 1,2, ... , 
then 
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8 Strong Convergence of Delete-One Cross-Validation 

Given an additional condition (uniqueness of optimal weights) we can show strong 
convergence for delete-one cross-validation. First we establish uniform convergence 
of the estimators WP(Z~i) to optimal weights (uniformly over 1 < i < N.) 

Theorem 2 Let Assumptions 1 through 5 hold. Let Z~k be the dataset made by 
deleting the kth observation from ZN. Then 

max d (IN-1(Z~i;P), Wp*) --+ 0 a.s.-P as N --+ 00, (11) 
l~i~N 

where d(w, Wp*) = infw.Ewp.llw - w*lI. 

This convergence result leads to the next result that the delete-one cross validation 
measure does not under-estimate the optimized MSE, namely, infwPEWp ).(wP;p). 

Theorem 3 Let Assumptions 1 through 5 hold. Then 

liminfCN(ZN ;p) > min ).(w;p) a.s.-P. 
N-oo wEWp 

When the optimum weight is unique, we have a stronger result about convergence 
of the delete-one cross validation measure. 

Assumption 6 Wp* is a singleton, i.e., wp* has only one element. 

Theorem 4 Let Assumptions 1 through 6 hold. Then 

CN (ZN ;p) - E [QN(ZN ;p)] --+ 0 a.s. as N --+ 00. 

9 Conclusion 

Our results justify the intuition that cross-validation measures unbiasedly and con­
sistently estimate the expected squared error of networks trained on finite training 
sets, therefore providing means of obtaining 1M S E-approximate methods of select­
ing appropriate network architectures, or for evaluating particular choice of training 
set. 

Use of these cross-validation measures therefore permits us to avoid underfitting 
the data, asymptotically. Note, however, that although we also thereby avoid over­
fitting asymptotically, this avoidance is not necessarily accomplished by choosing 
a minimally complex architecture. The possibility exists that IMSEN-1(p) = 
1M S EN -1 (p + 1). Because our cross-validated estimates of these quanti ties are 
random we may by chance observe CN(ZN;p) > CN(ZN;p+ 1) and therefore se­
lect the more complex network, even though the less complex network is equally 
good. Of course, because the IMSE's are the same, no performance degradation 
(overfitting) will result in this solution. 
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