
Backpropagation without Multiplication

Patrice Y. Simard
AT &T Bell Laboratories

Holmdel, NJ 07733

Abstract

Hans Peter Graf
AT&T Bell Laboratories

Holmdel, NJ 07733

The back propagation algorithm has been modified to work with­
out any multiplications and to tolerate comput.ations with a low
resolution, which makes it. more attractive for a hardware imple­
mentatioll. Numbers are represented in float.ing point format with
1 bit mantissa and 3 bits in the exponent for the states, and 1 bit
mantissa and 5 bit exponent. for the gradients, while the weights are
16 bit fixed-point numbers. In this way, all the computations can
be executed with shift and add operations . Large nehvorks with
over 100,000 weights were t.rained and demonstrat.ed the same per­
formance as networks comput.ed with full precision. An estimate of
a circuit implementatioll shows that a large network can be placed
on a single chip , reaching more t.han 1 billion weight updat.es pel'
second. A speedup is also obtained on any machine where a mul­
tiplication is slower than a shift operat.ioJl.

1 INTRODUCTION

One of the main problems for implement.ing the backpropagation algorithm in hard­
ware is the large number of multiplications t.hat. have to be executed. Fast multipli­
ers for operands wit.h a high resolution l'eqllire a large area. Hence the multipliers
are the elements dominating t.he area of a circuit. i\'Iany researchers have tried to
reduce the size of a circuit by limit.ing the resolution of the computation. Typically,
this is done by simply reducing the number of bits utilized for the computation. For
a forward pass a reduction tOjllst a few , 4 to 6. bits, often degl'ades the performance
very little, but. learning requires considerably more resolution. Requirements rang­
ing anywhere from 8 bits to more than 16 bits were report.ed to be necessary to make
learning converge relia.bly (Sakaue et al., 1993; Asanovic , I\'Iorgan and \Va.wrzYllek,
1993; Reyneri and Filippi, 1991). But t.here is no general theory, how much resolu­
tion is enough, and it depends on several factors, such as the size and architecture
of the network as \-vell as on the t.ype of problem to be solved .

232

Backpropagation without Multiplication 233

Several researchers have tried to tl'ain networks where the weights are limited to
powers of two (Kwan and Tang, 1993; White and Elmasry, 1992; l'vlarchesi et. al.,
1993). In this way all the multiplications can be reduced to shift operations, an
operation that can be implemented with much less hardware than a multiplication.
But restricting the weight values severely impacts the performance of a network, and
it is tricky to make t.he learning procedure converge. III fact , some researchers keep
weights with a full resolution off-line and update t.hese weights in the backward pass,
while the weights with reduced resolution are used in the forward pass (Marchesi
et al., 1993) . Similar tricks are usually used when networks implemented in analog
hardware are trained. Weight.s with a high resolution are stored in an external,
digital memory while the analog net.work with its limited resolution is used in the
forward pass. If a high resolution copy is not stored, the weight update process
needs to be modified. This is typically done by using a stochastic update technique,
such as weight dithering (Vincent and l\lyers, 1 9~)2), or weight perturbation (.J abri
and Flower, 1992).

We present here an algorithm that instead of reducing the resolut.ion of the weights,
reduces the resolution of all t.he other values, namely those of the states, gradients
and learning rates, to powers of two. This eliminates multiplications without af­
fecting the learning capabilities of t.he network. Therefore we ohtain the benefit of
a much compacter circuit without any compromises on the learning performance.
Simulations of large net.works with over 100,000 weights show that this algorithm
perf?r.ms as well as standal'd backpwpagation computed with 32 bit floating point
preCIsIon.

2 THE ALGORITHM

The forward propagat.ion for each unit i. is given by the pquation:

Xj = j~(L wji.t' il (1)

where f is the unit functjoll, Wji is the weight from unit i to unit j, and Xi is the
activation of unit i. The backpwpagation algorithm is wbust with regard to the
unit function as long as the function is nonlinear, monotonically increasing, and a
derivative exists (the most commonly used function is depicted in Figure 1, left.
A saturated ramp function (see Figure 1, middle), for instance, performs as well
as the differentiable sigmoid. The binary threshold function, however, is too much
of a simplification and results in poor performance . The choice of OUl' function is
dictated by the fact that we would like t.o have only powers of two for the unit values.
This function is depicted ill Figure 1, right. It gives performances comparable to
the sigmoid or the saturated ramp . Its values can be represented by a 1 bit mantissa
(the sign) with a. 2 or 3 bit exponent. (negative powers of t.wo).

The derivative of this funct.ion is a. SlIm of Dirac delta functions, but we take instead
the derivative of a piecewise linear ramp funct.ion (see Figure 1) . 0\1(" could actually
consider this a low pass filtered version of the real derivat.ive . After the gradients
of all the units have been computed using the equation.

[h = If (s 11 In i) L U'j i [lj

j

(2)

we will discretize the values to be a power of two (wit h sign) . This introduces noise
into the gradient and its effect, on the learning has to be considered carefully. This

234 Simard and Graf

Sigmoid

F\Jflctl.On

1..

...

-,

-l.$_I:-.--:_,:--: .• ~_":", ~_.~ .• ~. -=.--=-.• ~, ""7,--=-.,~,

Functlon derl.Vatlve
1..

-o.S

-,

-1 • '_':-, ~_,~ •• :-':"_,-_-:-•• :-. "'=.~ •. :-, "':,--;" .. :-, ~,

Piecewise linear

Functlon

1.,

-,

-l.~_':-, -:_,:'": .• ~_":", -:_,~. ,~, -:,--=-. ,~, ""7,"": .• -:,

FunctIon derlvatl.Ve

1..

-o.S

-,

-1. S_I:-, --:_,:--:. ,-_":", ~_.~. ,~. -=,'"'". ,~, ""7,'"'". ,--:,

Power of two

F'Unction .. ,

..,

- o. S

-'1----1

-) . s _':-, -:_,-=. ,~_.,.., -:_.-=. ,--::-. -,.'"'"., -.-, -:",'"'".,-!,

FunctIon derl.vatl.ve (apprOXlmationJ ..,

-O.!

-,

-1. '-'="2 --:""1. ':-':"-1--":"" •. :-, "'=o~ •. :-, -:"'--:"'1.:-, -:,

Figure 1: Left: sigmoid function with its derivative.]\>'1iddle: piecewise linear
function with its derivative. Right.: Sat.urated power of two function with a power
of two approximation of its derivative (ident.ical to t.he piecewise linear derivative).

problem will be discussed in section 4. The backpropagat.ion algorithm can now be
implemented with addit.ions (or subtract.iolls) and shifting only. The weight update
is given by the equa.tion:

D.1.Vji = -119jXi (3)
Since both 9j and Xi are powers of two, the weight update also reduces to additions
and shifts.

3 RESULTS

A large structured network wit.h five layers and overall 11l00'e t.han 100,000 weights
was used to test this algorithm. The applicat.ion analyzed is recognizing handwrit.ten
character images. A database of 800 digits was used for training and 2000 hand­
written digits were used for test.ing. A description of this network can be found in
(Le Cun et aI., 1990). Figure 2 shows the learning curves on t.he test set for various
unit functions and discretization processes.

First, it should be noted that t.he results given by the sigmoid function and the
saturated ramp with full precision on unit values, gradients, and weights are very
similar. This is actually a well known behavior. The surprising result comes from
the fact that reducing the precision of the unit values and the gradients to a 1 bit
mantissa does not reduce the classification accuracy and does not even slow down the
learning process. During these tests the learning process was interrupted at various
stages to check that both the unit values (including the input layer, but excluding
the output layer) and t.he gradient.s (all gradients) were restricted to powers of two.
It was further confirmed that. ollly 2 bits wet'e sufficient. for the exponent of the unit

Backpropagation without Multiplication 235

Training Testing
100 error 100 error

go • sigmoid 90 • sigmoid
o piecewise lin D piecewise lin

eo o power of 2 80 o power of 2

70 70

60 60

50 50

40 40

30 30

20 20

10 10 IlohU:e::a.n:u
~

0 0
0 2 4 6 8 10 12 14 18 18 20 22 24 0 2 4 6 8 10 12 14 16 16 20 22 24

age (in 1000) age (in 1000)

Figure 2: Training and testing error during leaming. The filled squares (resp.
empty squared) represent the points obtained with the vanilla backpropagation and
a sigmoid function (resp. piecewise linear function) used a<; an activation function.
The circles represent the same experiment done wit.h a power of t.wo function used
as the activation function, and wit.h all lInit. gradients discretized to the nearest
power of two.

values (from 2° to 2-3) and 4 bit.s were sufficient for the exponent. of the gradients
(from 2° to 2- 15).

To test whether there was any asymptot.ic limit on performance, we ran a long
term experiment (several days) with our largest network (17,000 free parameters)
for handwritten character recognition. The training set (60,000 patterns) was made
out 30,000 patterns of the original NIST t.raining set (easy) and 30,000 patterns
out of the original NIST testing set (hard). Using the most basic backpropagation
algorithm (with a guessed constant learning rate) we got the training raw error rate
down to under 1 % in 20 epochs which is comparable to our standard learning time.
Performance on the test set was not as good with the discrete network (it took twice
as long to reach equal performance with the discrete network). This was attributed
to the unnecessary discretization of the output units 1.

These results show that gradients and unit activations can be discretized to powers
of two with negligible loss in pel"formance and convergence speed! The next section
will present theoretical explanations for why this is at. all possible and why it is
generally the case.

lSince the output units are not multiplied by anything, t.here is no need to use a
discrete activation funct.ion. As a matter of fact the continuous sigmoid function can be
implemented by just changing the target. values (using the inverse sigmoid function) and
by using no activation function for the output units. This modificat.ion was not introduced
but we believe it would improves the performance on t.he t.est. set. especially when fancy
decision rules (with confidencE' evaluatioll) are used, since t.hey require high precision on
the output units.

236 Simard and Graf

~:s:.ogram
2000

lROO

1600

1"00

1200

1000

aDD

600

'00

200

histogram

Best case: Noise
is uncorrelated and
a" weights are equal

Worse case: NOise
is correlated or the
weights are unequal

Figure 3: Top left: histogram of t.he gradients of one output unit after more than
20 epochs of learning over a training set of GO,OOO pallel'lIs . Bottom left: same
histogram assuming that the distt'ibutioll is constant between powers of two. Right:
simplified network architectlll'es fOl' noise effect. analysis .

4 DISCUSSION

Discretizing the gradient is potentially very dangerous. Convergence may no longer
be guaranteed, learning may hecome prohibitively slow, and final performance after
learning may be be too poor to be interesting, "Ve will now explain why these
problems do not arise for our choice of discret.ization.

Let gi(p) be the error gradient at weight i and pattern p. Let 1'.,: and Ui be the mean
and standard deviation of gi(p) over the set of patterns. The mean Pi is what is
driving the weights to their final values, the standard deviation Ui represents the
amplitudes of the variations of the gradients from pattern to pattern. In batch
learning, only Pi is used for the weight upda.te, while in stochastic gradient descent,
each gi(p) is used for the weight update. If the learning rate is small enough the
effects of the noise (measured by u;) of the stochastic variable Ui (p) are negligible,
but the frequent weight updates in stochastic gradient descent result. in important
speedups,

To explain why the discretization of the gradient to a power of two has negligible
effect on the pel'formance, consider that in stochastic gradient descent, the noise on
the gradient is already so large that it is minimally affected by a rounding (of the
gradient) to the nearest power of two. Indeed asymptotically, t.he gradient a.verage
(Pi) tends to be negligible compared to it.s standard deviation (ui), meaning that
from pattern to pattern the gradient can undergo sign reversals, Rounding to the
nearest power of two in comparison is a change of at. most 33%, but never a change
in sign. This additional noise can therefore be compensated by a slight. decrease in
the learning rate which will hardly affect the leal'l1ing process .

Backpropagation without Multiplication 237

The histogram of gi(p) after learning in the last experiment described in the result
section, is shown in Figure 3 (over the training set of 60,000 patterns). It is easy to
see in the figure that J.li is small wit.h respect to (7i (in this experiment J.li was one to
two orders of magnitude smaller than (7i depending on the layer). vVe can also see
that rounding each gradient to the nearest power of two will not affect significantly
the variance (7i and therefore the learning rate will not need to be decreased to
achieve the same performance.

We will now try to evaluate the rounding to the nearest power of two effect more
quantitatively. The standard deviation of the gradient for any weight can be written
as

'I 1~ ') l~ ') ') l~ 2 (7; = N ~(gi(P) - pi)- = N ~ gi(p)- - J.l- ~ N ~ gi(p) (4)
p p p

This approximation is very good asymptotically (after a few epochs of learning).
For instance if lJ.li I < (7;/ 10, the above formula gives the standard deviation to 1 %.

Rounding the gradient gi to the nearest power of two (while keeping the sign) can
be viewed as the effect of a multiplicative noise 11i in the equation

g/ = 2k = ad 1 + nd for some k (5)

where g/ is the nearest power of two from gj. It can be easily verified that this
implies that 11.i ranges from -1/3 and 1/3 . From now on , we will view Hi as a
random variable which models as noise the effect of discretization . To simplifY the
computation we will assume that 11j has uniform distribution. The effect of this
assumption is depicted in figure :3, where the bottom histogram has been assumed
constant between any two powers of t.wo.

To evaluate the effect of the noise ni in a multilayer network , let 7Ili be the multi­
plicative noise introduced at layer I (l = 1 for the output, and I = L for the first
layer above the input) for weight i. Let's further assume that there is only one unit
per layer (a simplified diagra.m of the network architecture is shown on figure 3.
This is the worst case analysis. If there are several units per layer, the gradients
will be summed to units in a lower layer. The gradients within a layer are corre­
lated from unit to unit (they all originate from the same desired values), but the
noise introduced by the discretization can only be less correlated, not more . The
summation of the gradient in a lower layer can therefore only decrease the effect of
the discretization . The worst case analysis is t.herefore when there is only one unit.
per layer as depicted in figure :3, extreme right. \Ve will further assume that the
noise introduced by the discretizat.ion ill one layer is independent from the Iloise
introduced in the next layer . This is not ~'eally true but it greatly simplifies the
derivation.

Let J.l~ and (7i be the mean and standard deviation of Oi (p)'. Since nli has a zero
mean, J.l~ = J.li and J1~ is negligible with respect to gd}J)· In the worst case, when the
~radient has to be backpropagated all the way to t.he input , the standard deviation
IS:

L

1 (3 j1/3) (1) L
N L gi(p)2 II -2 (1 + 11 Ii)2d7l/i - /1 2 ~ (7; 1 + -.

p 1 -1/3 27
(6)

238 Simard and Graf

As learning progresses, the minimum average distance of each weight to the weight
corresponding to a local minimum becomes proportional to the variance of the noise
on that weight, divided by the learning rate. Therefore, asymptotically (which is
where most of the time is spent), for a given convergence speed, the learning rate
should be inversely proportional to the variance of the noise in the gradient. This
means that to compensClte the effect of the discretization. the learning rate should
be divided by

(1"
I

L (11+ ;7) '" 1.02£ (7)

Even for a 10 layer network this value is only 1.2, (u~ is 20 % larger than ud.
The assumption that the noise is independent from layer to layer tends to slightly
underestimate this number while the assumption that the noise from unit to unit
in the same layer is completely correlated tends to overestimate it.

All things considered, we do not expect that the learning rate should be decrea'Sed
by more than 10 to 20% for any practical application. In all our simulations it was
actually left unchanged!

5 HARDWARE

This algorithm is well suited for integrating a large network on a single chip . The
weights are implemented with a resolution of 16 bits, while the states need only 1
bit in the mantissa and 3 bits in the exponent, the gradient 1 bit in the mantissa
and 5 bits in the exponent, and for the learning rate 1 bits mantissa and 4 bits
exponent suffice. In this way, all the multiplications of weights with states, and of
gradients with learning rates and st.at.t's. reduce to add operations of the exponents.

For the forward pass the weights are multiplied with the states and then summed.
The mUltiplication is executed as a shift operation of the weight values. For sum­
ming two products their mantissae have to be aligned, again a shift operation, and
then they can be added. The partial sums are kept at full resolution until the end of
the summing process. This is necessary to avoid losing the influence of many small
products. Once the sum is computed, it is then quantized simply by checking the
most significant bit in the mantissa. For the backward propagation the computation
runs in the same way, except t.hat now the gradient is propagated through the net,
and the learning rate has to be taken into account..

The only operations required for this algorithm are 'shift' and 'add'. An ALU
implementing these operations with the resolution ment.ioned can be built with
less than 1,000 transistors. In order to execut.e a network fast, its weights have to
be stored on-chip. Ot.herwise, t.he time required to t.ransfer weight!; from external
memory onto the chip boundary makes the high compute power all but useless. If
storage is provided for 10,000 weights plus 2,000 states, this requires less than 256
kbit of memory. Together with 256 ALUs and circuitry for routing the data, this
leads to a circuit with about 1.7 million transistors, where over 80% of them are
contained in the memory. This assumes that the memory is implemented with static
cells, if dynamic memory is used instead the transistor count drops considerably ..
An operating speed of 40 MHz resnlts in a compute rate of 10 billion operat.ions
per second. \-\lith such a chip a network may be trained at a speed of more than 1
billion weight updates per second.

Backpropagation without Multiplication 239

This algorithm has been optimized for an implementation on a chip, but it can
also provide a considerable speed up when executed on a standard computer. Due
to the small resolution of the numbers, several states can be packed into a 32 bit
number and hence many more fit int.o a chache. Moreover on a machine without
a hardware multiplier, where the multiplication is executed with microcode, shift
operations may be much faster than multiplications. Hence a suhstancial speedup
may be observed.

References

Asanovic, K., Morgan, N., and \Vawrzynek, J. (1993). Using Simulations of Re­
duced Precision Arithmetic t.o Design a Neura- Microprocessor. 1. FLSI Signal
Processing, 6(1):33-44.

Jabri, M. and Flower, B. (1992). 'Veight Perturbation: An optimal architecture
and learning technique for analog VLSI feedforward and l'ecmrent multilayer
networks. IEEE Trans. Neural Networks, 3(3):154-157.

Kwan, H. and Tang, C. (1993). Multipyerless Multilayer Feedforward Neural Net­
work Desi~n Suitable for Continuous Input-Output Mapping. Elecironic Lei­
ters,29(14):1259-1260.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. (1990). Handwritten Digit Recognition with a Back­
Propagation Network . In Touretzky, D., editor, Neural Injo1'lnaiio71 Processing
Systems, volume 2, (Denver, 1989). l'vIorgan Kaufman.

Marchesi, M., Orlando, G., Piazza, F., and Uncini, A. (1993). Fast Neural Networks
without Multipliers. IEEE Trall.5. Ne11ral Networks, 4(1):53-62.

Reyneri, L. and Filippi, E. (1991). An analysis on the Performance of Silicon Im­
plementations of Backpropagation Algorithms for Artificial Nemal Networks.
IEEE Trans. Computer's, 40(12): 1380-1389.

Sakaue, S., Kohda, T., Yamamoto, II., l\'laruno, S., and Shimeki, Y. (1993). Re­
duction of Required Precision Bits for Back-Propagation Applied to Pattern
Recognition. IEEE Tralls. Neural Neiworks, 4(2):270-275.

Vincent, J. and Myers, D. (1992). Weight dithering and \Vordlength Selection for
Digital Backpropagation Networks. BT Tech7lology J., 10(3):124-133.

White, B. and Elmasry, M. (1992). The Digi-Neocognitron: A Digit.al Neocognit.ron
Neural Network Model for VLSI. IEEE Trans. Nel/r'al Networks, 3(1):73-85.

