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Abstract 

The relationships between learning, development and evolution in 
Nature is taken seriously, to suggest a model of the developmental 
process whereby the genotypes manipulated by the Genetic Algo­
rithm (GA) might be expressed to form phenotypic neural networks 
(NNet) that then go on to learn. ONTOL is a grammar for gener­
ating polynomial NN ets for time-series prediction. Genomes corre­
spond to an ordered sequence of ONTOL productions and define a 
grammar that is expressed to generate a NNet. The NNet's weights 
are then modified by learning, and the individual's prediction error 
is used to determine GA fitness. A new gene doubling operator 
appears critical to the formation of new genetic alternatives in the 
preliminary but encouraging results presented. 

1 Introduction 

Two natural phenomena, the learning done by individuals' nervous systems and the 
evolution done by populations of individuals, have served as the basis of distinct 
classes of adaptive algorithms, neural networks (NNets) and Genetic Algorithms 
(GAs), resp. Interactions between learning and evolution in Nature suggests that 
combining NNet and GA algorithmic techniques might also yield interesting hybrid 
algorithms. 
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Taking the analogy to learning and evolution seriously, we propose that the missing 
feature is a the developmental process whereby the genotypes manipulated by the 
GA are expressed to form phenotypic NNets that then go on to learn. Previous 
attempts to use the GA to search for good NN et topologies have foundered exactly 
because they have assumed an overly direct genotype-to-phenotype correspondence. 
This research is therefore consistent with other NN et research the physiology of 
neural development [3] as well as those into "constructive" methods for changing 
network topologies adaptively during the training process [4]. Additional motivation 
derives from the growing body of neuroscience demonstrating the importance of 
developmental processes as the shapers of effective learning networks. Cognitively, 
the resolution of false dicotomies like "nature/nurture" and "nativist/empiricist" 
also depends on a richer language for describing the way genetically determined 
characteristics and within-lifetime changes by individuals can interact. 

Because GAs and NNets are each complicated technologies in their own right, and 
because the focus of the current research is a model of development that can span 
between them, three major simplifications have been imposed for the preliminary 
research reported here. First, in order to stay close to the mathematical theory of 
functional approximation, we restrict the form of our NNets to what can be called 
"polynomials networks" (cf. [7]). That is, we will consider networks with a first 
layer of linear units (Le., terms in the polynomial that are simply weighted input 
Xi), a second layer with units that form products of first-layer units, a third layer 
with units that form products of second-layer units, etc.; see Figure 1, and below 
for an example. As depicted in Figure 1 the space of polynomial networks can be 
viewed as two-dimensional, parameterized by dimension (Le., how much history of 
the time series is used) and degree. 

There remains the problem of finding the best parameter values for this particular 
polynomial form. Much of classicial optimization theory and more recent NNet 
research is concerned with various methods for performing this task. Previous re-
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search has demonstrated that the global sampling behavior of the GA works very 
effectively with any gradient, local search technique [2]. The second major sim­
plification, then, is that for the time being we use only the most simple-minded 
gradient method: first-order, fixed-step gradient descent. Analytically, this is the 
most tractible, and the general algorithm design can readily replace this with any 
other local search technique. 

The final simplification is that we focus on one of the most parsimonious of prob­
lems, time series prediction: The GA is used to evolve NNets that are good at 
predicting X1+1 given access to an unbounded history X 1 , X1-1, X1-2, .... Polyno­
mial ai)proximations of an arbitrary time series can vary in two dimensions: the 
extent to which they rely on this history, and (e.g., how far back in time), and 
in their degree. The Stone-Weierstrauss Aproximation Theorem guarantees that, 
within this two-dimensional space, there exists some polynomial that will match 
the desired temporal sequence to arbitrarily precision. The problem, of course, is 
that over a history H and allowing m degree terms there exists O(Hm) terms, far 
too many to search effectively. From the perspective of function approximation, 
then, this work corresponds to a particular heuristic for searching for the correct 
polynomial form, the parameters of which will be tuned with a gradient technique. 

2 Expression of the ONTOL grammar 

Every multi-cellular organism has the problem of using a single genetic description 
contained in the first germ cell as specification for all of its various cell types. The 
genome therefore appears to contain a set of developmental instructions, subsets of 
which become "relevant" to the particular context in which each developing cell finds 
itself. If we imagine that each cell type is a unique symbol in some alphabet, and 
that the mature organism is a string of symbols, it becomes very natural to model 
the developmental process as a (context-sensitive) grammar generating this string 
[6, 5]. The initial germ cell becomes the start symbol. A series of production rules 
specify the expansion (mitosis) of this non-terminal (cell) into two other symbols 
that then develop according to the same set of genetically-determined rules, until 
all cells are in a mature, terminal state. 

ONTOL is a grammar for generating cells in the two-dimensional space of poly­
nomial networks. The left hand side (LHS) of productions in this grammar define 
conditions on the cells' internal Clock state and on the state of its eight Moore 
neighbors. The RHS of the production defines one of five cell-state update actions 
that are performed ifthe LHS condition is satisfied: A cell can mitosize either left or 
down (M Left, M Down), meaning that this adjacent cell now becomes filled with 
an identical copy; Die (Le., disappear entirely); Tick (simply decrement its inter­
nal Clock state); or Terminate (cease development). Only terminating cells form 
synaptic connections, and only to adjacent neighbors. 

The developmental process is begun by placing a single "gamete" cell at the origin of 
the 2d polyspace, with its Clock state initialized to a maximal value M azClock = 4; 
this state is decremented every time a gene is fired. If and when a gene causes this 
cell to undergo mitosis, a new cell, either to the left or below the originial cell, is 
created. Critically, the same set of genetic instructions contained in the original 
gametic cell are used to control transitions of all its progeny cells (much like a 
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Figure 2: Logistic genome, engineered 

cellular automaton's transition table), even though the differing contexts of each 
cell are likely to cause different genes to be applied in different cells. Figure 2 shows 
a trace of this developmental process: each snap-shot shows the Clock states of all 
active (non-terminated) cells, the coordinates of the cell being expressed, and the 
gene used to control its expression. 

3 Experimental design 

Each generation begins by developing and evaluating each genotype in the popu­
lation. First, each genome in the population is expressed to form an executable 
Lisp lambda expression computing a polynomial and a corresponding set of initial 
weights for each of its terms. If this expression can be performed successfully and 
the individual is viable (Le., their genomes can be interpretted to build well-formed 
networks), the individual is exposed to NTrain sequential instances of the time 
series. Fitness is then defined to be its cumulative error on the next NTest time 
steps. 

After the entire population has been evaluated, the next generation is formed ac­
cording to a relatively conventional genetic algorithm: more successful individuals 
are differentially reproduced and genetic operators are applied to these to experi­
ment with novel, but similar, alternatives. Each genome is cloned zero, one or more 
times using a proportional selection algorithm that guarantees the expected number 
of offspring is proportional to an individual's relative fitness. 

Variation is introduced into the population by mutation and recombination genetic 
operators that explore new genes and genomic combinations. Four types of mutation 
were applied, with the probability of a mutation proportional to genome length. 
First, some random portion of an extant gene might be randomly altered, e.g., 
changing an initial weight, adding or deleting a constraint on a condition, changing 
the gene's action. Because a gene's order in the genome can affect its probability 
of being expressed, a second form of mutation permutes the order of the genes on 
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the genome. A third class of mutation removes genes from the genome, always 
"trimming" them from the end. Combined with the expression mechanism's bias 
towards the head of the genomic list, this trimming operation creates a pressure 
towards putting genes critical to early ontogeny near the head. The final and 
critical form of mutation randomly selects a gene to be doubled: a duplicate copy of 
the gene is constructed and inserted at a randomly selected position in the genome. 
After all mutations have been performed, cross-over is performed between pairs of 
individuals. 

4 Experiments 

To demonstrate, consider the problem of predicting a particularly difficult time 
series, the chaotic logistic map: X t = 4.0Xt _ 1 - 4.oxl_ 1. The example of Figure 2 
showed an ONTOL genome engineered to produce the desired logistic polynomial. 
This "genetically engineered" solution is merely evidence that a genetic solution 
exists that can be interpretted to form the desired phenotypic form; the real test is 
of course whether the GA can find it or something similar. 

Early generations are not encouraging. Figure 3 shows the minimum (i.e., best) 
prediction error and popUlation average error for the first 800 generations of a typical 
simulation. Initial progress is rapid because in the initial, randomly constructed 
population, fully half of the individuals are not even viable. These are strongly 
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Figure 4: Complex polynomials 

selected against, of course, and within the first two or three generations at least 
95% of all generations remain viable. 

For the next several hundred generations, however, all of aNTOL's developmental 
machinery appears for naught as the dominant phenotypic individuals are the most 
"simplistic" linear, first-degree approximators of the form W1Xl + woo Even here, 
however, the GA is able to work in conjunction with the gradient learning process 
is able to achieve Baldwin-like effects optimizing Wo and WI [1]. The simulation 
reaches a "simplistic plateau," then, as it converges on a population composed of 
the best predictors the simplistic linear, first-degree network topology permits for 
this time series. 

In the background, however, genetic operators are continuing to explore a wide 
variety of genotypic forms that all have the property of generating roughly the 
same simplistic phenotypes. Figure 4 shows that there are significant numbers of 
"complex" polynomials l in early generations, and some of these have much higher 
than average fitness2 On average, however, genes leading to complex phenotypes 
provide lead to poorer approximations than the simplistic ones, and are quickly 
culled. 

lI.e., either nonlinear terms or higher dimensional dependence on the past 
2Note the good solutions in the first 50 generations, as well as subsequent dips during 

the simplistic plateau. 
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Figure 5: Genome length 

A critical aspect of the redundancy introduced by gene doubling is that old genetic 
material is freed to mutate into new forms without threatening the phenotype's 
viability. When compared to a population of mediocre, simplistic networks any 
complex networks able to provide more accurate predictions have much higher fit­
ness, and eventually are able to take over the population. Around generation 400, 
then, Figure 3 shows the fitness dropping from the simplistic plateau, and Figure 
4 shows the number of complex polynomials increasing. Many of these individuals' 
genomes indeed encode grammars that form polynomials of the desired functional 
form. 

A surprising feature of these simulations is that while the genes leading to complex 
phenotypes are present from the beginning and continue to be explored during 
the simplistic plateau, it takes many generations before these genes are successfully 
composed into robust, consistently viable genotypes. How do the complex genotypes 
discovered in later generations differ from those in the initial population? 

One piece of the answer is revealed in Figure 5: later genomes are much longer. 
All 100 individuals in the initial population have exactly five genes, and so the ini­
tial "gene pool" size is 500. In the experiments just described, this number grows 
asymptotically to approximately 6000 total genes (i.e., 60 per individual, on aver­
age) during the simplistic plateau, and then explodes a second time to more than 
10,000 as the population converts to complex polynomials. It appears that gene 
duplication creates a very constructive form of redundancy: mulitple copies of crit-
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ical genes help the genotype maintain the more elaborate development programs 
required to form complex phenotypes. Micro-analysis of the most successful indi­
viduals in later generations supports this view. While many parts of their genomes 
appear inconsequential (for example, relative to the engineered genome of Figure 2), 
both the M Down gene and the two-element Terminate genes, critical to forming 
polynomials that are "morphologically isomorphic" with the correct solution, are 
consistently present. 

This hypothesis is also supported by results from a second experiment, also plotted 
on Figure 5. Recall that the increase in genome size caused by gene doubling is offset 
by a trimming mutation that periodically shortens a genome. The curve labelled 
"Neutral" shows the results of these opposing operations when the next generation 
is formed randomly, rather than being selected for better prediction. Under neutral 
selection, genome size grows slightly from initial size, but gene doubling and genome 
trimming then quickly reach equilibrium. When we select for better predictors, 
however, longer genomes are clearly preferred, at least up to a point. The apparent 
asymptote accompanying the simplistic plateau suggests that if these simulations 
were extended, the length of complex genotypes would also stabalize.a 
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