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A number of hybrid multilayer perceptron (MLP)/hidden Markov 
model (HMM:) speech recognition systems have been developed in 
recent years (Morgan and Bourlard. 1990). In this paper. we present 
a new MLP architecture and training algorithm which allows the 
modeling of context-dependent phonetic classes in a hybrid 
MLP/HMM: framework. The new training procedure smooths MLPs 
trained at different degrees of context dependence in order to obtain 
a robust estimate of the cootext-dependent probabilities. Tests with 
the DARPA Resomce Management database have shown substantial 
advantages of the context-dependent MLPs over earlier cootext­
independent MLPs. and have shown substantial advantages of this 
hybrid approach over a pure HMM approach. 

1 INTRODUCTION 
Bidden Markov models are used in most current state-of-the-art continuous-speech 
recognition systems. A hidden Markov model (HMM) is a stochastic finite state 
machine with two sets of probability distributions. Associated with each state is a 
probability distribution over transitions to next states and a probability distribution 
over output symbols (often referred to as observation probabilities). When applied to 
continuous speech. the observation probabilities are typically used to model local 
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speech features such as spectra, and the transition probabilities are used to model the 
displacement of these features through time. HMMs of individual phonetic segments 
(phones) can be concatenated to model words and word models can be concatenated, 
according to a grammar, to model sentences, resulting in a finite state representation 
of acoustic-phonetic, phonological, and syntactic structure. 

The HMM approach is limited by the need for strong statistical assumptions that are 
unlikely to be valid for speech. Previous work by Morgan and Bourlard (1990) has 
shown both theoretically and practically that some of these limitations can be over­
come by using multilayer perceptrons (MLPs) to estimate the HMM state-dependent 
observation probabilities. In addition to relaxing the restrictive independence assump­
tions of traditional HMMs, this approach results in a reduction in the number of 
parameters needed for detailed phonetic modeling as a result of increased sharing of 
model parameters between phonetic classes. 

Recently, this approach was applied to the SRI-DECIPHER™ system, a state-of-the-art 
continuous speech recognition system (Cohen et al., 1990), using an MLP to provide 
estimates of context-independent posterior probabilities of phone classes, which were 
then converted to HMM context-independent state observation likelihoods using 
Bayes' rule (Renals et aI., 1992). In this paper, we describe refinements of the system 
to model phonetic classes with a sequence of context-dependent probabilities. 

Context-dependent modeling: The realization of individual phones in continuous 
speech is highly dependent upon phonetic context. For example, the sound of the 
vowel /ae/ in the words "map" and "tap" is different, due to the influence of the 
preceding phone. These context effects are referred to as "coarticulation". Experience 
with HMM technology has shown that using context-dependent phonetic models 
improves recognition accuracy significantly (Schwartz et al., 1985). This is so because 
acoustic correlates of coarticulatory effects are explicitly modeled, producing sharper 
and less overlapping probability density functions for the different phone classes. 

Context-dependent HMMs use different probability distributions for every phone in 
every different relevant context. This practice causes problems that are due to the 
reduced amount of data available to train phones in highly specific contexts, resulting 
in models that are not robust and generalize poorly. The solution to this problem used 
by many HMM systems is to train models at many different levels of context­
specificity, including biphone (conditioned only on the phone immediately to the left 
or right), generalized biphone (conditioned on the broad class of the phone to the left 
or right), triphone (conditioned on the phone to the left and the right), generalized tri­
phone, and word specific phone. Models conditioned by more specific contexts are 
linearly smoothed with more general models. The "deleted interpolation" algorithm 
(Jelinek and Mercer, 1980) provides linear weighting coefficients for the observation 
probabilities with different degrees of context dependence by maximizing the likeli­
hood of the different models over new, unseen data. This approach cannot be directly 
extended to MLP-based systems because averaging the weights of two MLPs does not 
result in an MLP with the average performance. It would be possible to use this 
approach to average the probabilities that are output from different MLPs; however, 
since the MLP training algorithm is a discriminant procedure, it would be desirable to 
use a discriminant or error-based procedure to smooth the MLP probabilities together. 

An earlier approach to context-dependent phonetic modeling with MLPs was proposed 
by Bourlard et al. (1992). It is based on factoring the context-dependent likelihood 
and uses a set of binary inputs to the network to specify context classes. The number 
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of parameters and the computational load using this approach are not much greater 
than those for the original context-independent net. 

The context-dependent modeling approach we present here uses a different factoring 
of the desired context-dependent likelihoods. a network architecture that shares the 
input-to-hidden layer among the context-dependent classes to reduce the number of 
parameters. and a training procedure that smooths networks with different degrees of 
context-dependence in order to achieve robustness in probability estimates. 

Multidistribution modeling: Experience with HMM-based systems has shown the 
importance of modeling phonetic units with a sequence of distributions rather than a 
single distribution. This allows the model to capture some of the dynamics of 
phonetic segments. The SRI-DECIPHER™ system models most phones with a 
sequence of three HMM states. Our initial hybrid system used only a single MLP out­
put unit for each HMM phonetic class. This output unit supplied the probability for 
all the states of the associated phone model. 

Our initial attempt to extend the hybrid system to the modeling of a sequence of dis­
tributions for each phone involved increasing the number of output units from 69 
(corresponding to phone classes) to 200 (corresponding to the states of the HMM 
phone models). This resulted in an increase in word-recognition error rate by almost 
30%. Experiments at ICSI had a similar result (personal communication). The higher 
error rate seemed to be due to the discriminative nature of the MLP training algo­
rithm. The new MLP. with 200 output units. was attempting to discriminate sub­
phonetic classes. corresponding to HMM states. As a result. the MLP was attempting 
to discriminate into separate classes acoustic vectors that corresponded to the same 
phone and. in many cases. were very similar but were aligned with different HMM 
states. There were likely to have been many cases in which almost identical acoustic 
training vectors were labeled as a positive example in one instance and a negative 
example in another for the same output class. The appropriate level at which to train 
discrimination is likely to be the level of the phone (or higher) rather than the sub­
phonetic HMM-state level (to which these outputs units correspond). The new archi­
tecture presented here accomplishes this by training separate output layers for each of 
the three HMM states. resulting in a network trained to discriminate at the phone 
level. while allowing three distributions to model each phone. This approach is com­
bined with the context-dependent modeling approach. described in Section 3. 

2 HYBRID MLP/HMM 
The SRI-DECIPHER™ system is a phone-based. speaker-independent. continuous­
speech recognition system. based on semicontinuous (tied Gaussian mixture) HMMs 
(Cohen et al.. 1990). The system extracts four features from the input speech 
waveform. including 12th-order mel cepstrum. log energy. and their smoothed deriva­
tives. The front end produces the 26 coefficients for these four features for each 10-
ms frame of speech. 

Training of the phonetic models is based on maximum-likelihood estimation using the 
forward-backward algorithm (Levinson et a1.. 1983). Recognition uses the Viterbi 
algorithm (Levinson et al .• 1983) to find the HMM state sequence (corresponding to a 
sentence) with the highest probability of generating the observed acoustic sequence. 

The hybrid MLP/HMM DECIPHERTM system substitutes (scaled) probability estimates 
computed with MLPs for the tied-mixture HMM state-dependent observation 
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probability densities. No changes are made in the topology of the HMM system. 
The initial hybrid system used an MLP to compute context-independent phonetic pro­
babilities for the 69 phone classes in the DECIPHER TM system. Separate probabilities 
were not computed for the different states of phone models. During the Viterbi recog­
nition search. the probability of acoustic vector Yt given the phone class qj. P (Yt I qj)' 
is required for each HMM state. Since MLPs can compute Bayesian posterior proba­
bilities. we compute the required HMM probabilities using 

P (Y I .) = P (q j I Yt )P (Yt ) (l) 
t q] P(qj) 

The factor P (qj I Yt ) is the posterior probability of phone class qj given the input vec­
tor Y at time t. This is computed by a backpropagation-trained (Rumelhart et al .• 
1986) three-layer feed-forward MLP. P (qj) is the prior probability of phone class % 
and is estimated by counting class occurrences in the examples used to train the MLP. 
P (Yt ) is common to all states for any given time frame. and can therefore be dis­
carded in the Viterbi computation. since it will not change the optimal state sequence 
used to get the recognized string. 

The MLP has an input layer of 234 units. spanning 9 frames (with 26 coefficients for 
each) of cepstra. delta-cepstra. log-energy. and delta-log-energy that are normalized to 
have zero mean and unit variance. The hidden layer has 1000 units. and the output 
layer has 69 units. one for each context-independent phonetic class in the 
DECIPHER TM system. Both the hidden and output layers consist of sigmoidal units. 

The MLP is trained to estimate P (q. I Yt ). where qj is the class associated with the 
middle frame of the input window. Stochastic ~adient descent is used. The training 
signal is provided by the HMM DECIPHER system previously trained by the 
forward-backward algorithm. Forced Viterbi alignments (alignments to the known 
word string) for every training sentence provide phone labels. among 69 classes. for 
every frame of speech. The target distribution is defined as 1 for the index 
corresponding to the phone class label and 0 for the other classes. A minimum rela­
tive entropy between posterior target distribution and posterior output distribution is 
used as a training criterion. With this training criterion and target distribution. assum­
ing enough parameters in the MLP. enough training data. and that the training does 
not get stuck in a local minimum. the MLP outputs will approximate the posterior 
class probabilities P (q j I Yt ) (Morgan and Bourlard. 1990). Frame classification on an 
independent cross-validation set is used to control the learning rate and to decide when 
to stop training as in Renals et al. (1992). The initial learning rate is kept constant 
until cross-validation performance increases less than 0.5%, after which it is reduced 
as l/2n until performance increases no further. 

3 CONTEXT-DEPENDENCE 
Our initial implementation of context-dependent MLPs models generalized biphone 
phonetic categories. We chose a set of eight left and eight right generalized biphone 
phonetic-context classes, based principally on place of articulation and acoustic 
characteristics. The context-dependent architecture is shown in Figure 1. A separate 
output layer (consisting of 69 output units corresponding to 69 context-dependent 
phonetic classes) is trained for each context. The context-dependent MLP can be 
viewed as a set of MLPs. one for each context. which have the same input-to-hidden 
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weights. Separate sets of context-dependent output layers are used to model context 
effects in different states of HMM phone models. thereby combining the modeling of 
multiple phonetic distributions and cmtext-dependence. During training and recogni­
tion. speech frames aligned with first states of HMM phones are associated with the 
appropriate left context output layer. those aligned with last states of HMM phones are 
associated with the appropriate right context output layer. and middle states of three 
state models are associated with the context-independent output layer. As a result. 
since the training proceeds (as before) as if each output layer were part of an indepen­
dent net. the system learns discriminatioo between the different phonetic classes within 
an output layer (which now corresponds to a specific context and HMM-state posi­
tion). but does not learn discrimjnatioo between occurrences of the same phooe in 
different contexts or between the different states of the same HMM phone. 

L1 RS 

1,000 hidden unIts 

234 Inputs 

Figure 1: Context-Dependent MLP 

3.1 CONTEXT ·DEPENDENT FACTORING 
In a context-dependent HMM. every state is associated with a specific phone class and 
context During the Viterbi recognition search. P (Yt Iqj .CA:) (the probability of acous­
tic vector Yt given the phone class qj in the context class CA:) is required for each 
state. We compute the required HMM probabilities using 

I. _ P (qj IYt .CA:)P (Yt ICA:) 
P(Yt % .c/c) - P(qj Ic/c) 

where P (Yt ICA:) can be factored again as 

I P (Ck IYt)p (Yt) 
P(Yt CA:) = ----­

P (CA:) 

(2) 

(3) 

The factor P(qj IYt.cA:) is the posterior probability of phone class qj given the input 
vector Yt and the context class C/c' To compute this factor. we consider the coodition­
ing on C/c in (2) as restricting the set of input vectors only to those produced in the 
context C/c. If M is the number of context classes. this implementation uses a set of M 
MLPs (all sharing the same input-to-hidden layer) similar to those used in the 
context-independent case except that each MLP is trained using only input-output 
examples obtained from the corresponding context. Ck. 
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Every context-specific net performs a simpler classification than in the context­
independent case because within a context the acoustics corresponding to different 
phones have less overlap. 

P (Ck Iy,) is computed by a second MLP. A three-layer feed-forward MLP is used 
which has 1000 hidden units and an output unit corresponding to each context class. 
P (qj Ic!) and P (Ck) are estimated by counting over the training examples. Finally, 
P CY,) is common to all states for any given time frame, and can therefore be dis­
carded in the Viterbi computation, since it will not change the optimal state sequence 
used to get the recognized string. 

3.2 CONTEXT -DEPENDENT TRAINING AND SMOOTHING 

We use the following method to achieve robust training of context-specific nets: 

An initial context-independent MLP is trained, as described in Section 2, to estimate 
the context-independent posterior probabilities over the N phone classes. After the 
context-independent training converges, the resulting weights are used to initialize the 
weights going to the context-specific output layers. Context-dependent training 
proceeds by backpropagating error only from the appropriate output layer for each 
training example. Otherwise, the training procedure is similar to that for the context­
independent net, using stochastic gradient descent and a relative-entropy training cri­
terion. Overall classification performance evaluated on an independent cross-validation 
set is used to determine the learning rate and stopping point. Only hidden-to-output 
weights are adjusted during context-dependent training. We can view the separate 
output layers as belonging to independent nets, each one trained on a non-overlapping 
subset of the original training data. 

Every context-specific net would asymptotically converge to the context conditioned 
posteriors P (qj IY, ,Ck) given enough training data and training iterations. As a result 
of the initialization, the net starts estimating P (qj IY,), and from that point it follows a 
trajectory in weight space, incrementally moving away from the context-independent 
parameters as long as classification performance on the cross-validation set improves. 
As a result, the net retains useful information from the context-independent initial con­
ditions. In this way, we perform a type of nonlinear smoothing between the pure 
context-independent parameters and the pure context-dependent parameters. 

4 EVALUATION 
Training and recognition experiments were conducted using the speaker-independent, 
continuous-speech, DARPA Resource Management database. The vocabulary size is 
998 words. Tests were run both with a word-pair (perplexity 60) grammar and with no 
grammar. The training set for the HMM system and for the MLP consisted of the 
3990 sentences that make up the standard DARPA speaker-independent training set for 
the Resource Management task. The 600 sentences making up the Resource Manage­
ment February 89 and October 89 test sets were used for cross-validation during both 
the context-independent and context-dependent MLP training, and for tuning HMM 
system parameters (e.g., word transition weight). 
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Table 1: Percent Word Error and Parameter Count with Word-Pair Grammar 

CIMLP CD~P HMM MIXED 
Feb91 5.~ 4.7 3.~ 3.2 
Sep92a 10.9 7.6 10.1 7.7 
Sep92b 9.5 6.6 7.0 5.7 
# Parms 300K 1400K 5500K 6 lOOK 

Table 2: Percent Word Error with No Grammar 

CIMLP CDMLP HMM MIXED 
Feb91 24.7 18.4 19.3 15.9 
Sep92a 31.5 27.1 29.2 25.4 
Sep92b 30.9 24.9 26.6 21.5 

Table I presents word recognition error and number of system parameters for four 
different versions of the system, for three different Resource Management test sets 
using the word-pair grammar. Table 2 presents word recognition error for the 
corresponding tests with no grammar (the number of system parameters are the same 
as those shown in Table I). 

Comparing context-independent MLP (CIMLP) to context-dependent MLP (CDMLP) 
shows improvements with CDMLP in all six tests, ranging from a 15% to 30% reduc­
tion in word error. The CDMLP system combines multiple-distribution modeling with 
the context-dependent modeling technique. The CDMLP system performs better than 
the context-dependent HMM: (CDHMM:) system in five out of the six tests. 

The :MIXED system uses a weighted mixture of the logs of state obseIV ation likeli­
hoods provided by the CIMLP and the CDHMM: (Renals et al., 1992). This system 
shows the best recognition performance so far achieved with the DECIPHER TM system 
on the Resource Management database. In all six tests, it performs significantly better 
than the pure CDIDv1M: system. 

5 DISCUSSION 
The results shown in Tables I and 2 suggest that MLP estimation of HMM obsexva­
tion likelihoods can improve the performance of standard IDv1M:s. These results also 
suggest that systems that use MLP-based probability estimation make more efficient 
use of their parameters than standard HMM: systems. In standard HMMs, most of the 
parameters in the system are in the obseIVation distributions associated with the indivi­
dual states of phone models. MLPs use representations that are more distributed in 
nature, allowing more sharing of representational resources and better allocation of 
representational resources based on training. In addition, since MLPs are trained to 
discriminate between classes, they focus on modeling boundaries between classes 
rather than class internals. 

One should keep in mind that the reduction in memory needs that may be attained by 
replacing HMM distributions with MLP-based estimates must be traded off against 
increased computational load during both training and recognition. The MLP compu­
tations during training and recognition are much larger than the corresponding Gaus­
sian mixture computations for IDv1M: systems. 
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The results also show that the context-dependent modeling approach presented here 
substantially improves performance over the earlier context-independent MLP. In 
addition, the context-dependent MLP performed better than the context-dependent 
HMM in five out of the six tests although the CDMLP is a far simpler system than the 
CDHMM, with approximately a factor of four fewer parameters and modeling of only 
generalized biphone phonetic contexts. The CDHMM uses a range of context­
dependent models including generalized and specific biphone, triphone, and word­
specific phone. The fact that context-dependent MLPs can perform as well or better 
than context-dependent HMMs while using less specific models suggests that they may 
be more vocabulary-independent, which is useful when porting systems to new tasks. 
In the near future we will test the CDMLP system on new vocabularies. 

The MLP smoothing approach described here can be extended to the modeling of finer 
context classes. A hierarchy of context classes can be defined in which each context 
class at one level is included in a broader class at a higher level. The context-specific 
MLP at a given level in the hierarchy is initialized with the weights of a previously 
trained context-specific MLP at the next higher level, and then finer context training 
can proceed as described in Section 3.2. 

The distributed representation used by MLPs is exploited in the context-dependent 
modeling approach by sharing the input-to-hidden layer weights between all context 
classes. This sharing substantially reduces the number of parameters to train and the 
amount of computation required during both training and recognition. In addition, we 
do not adjust the input-to-hidden weights during the context-dependent phase of train­
ing, assuming that the features provided by the hidden layer activations are relatively 
low level and are appropriate for context-dependent as well as context-independent 
modeling. The large decrease in cross-validation error observed going from context­
independent to context-dependent MLPs (30.6% to 21.4%) suggests that the features 
learned by the hidden layer during the context-independent training phase, combined 
with the extra modeling power of the context-specific hidden-to-output layers, were 
adequate to capture the more detailed context-specific phone classes. 

The best performance shown in Tables 1 and 2 is that of the MIXED system, which 
combines CIMLP and CDHMM probabilities. The CDMLP probabilities can also be 
combined with CDHMM probabilities; however, we hope that the planned extension 
of our CDMLP system to finer contexts will lead to a better system than the MIXED 
system without the need for such mixing, therefore resulting in a simpler system. 

The context-dependent MLP shown here has more than 1,400,000 weights. We were 
able to robustly train such a large network by using a cross-validation set to determine 
when to stop training, sharing many of the weights between context classes, and 
smoothing context-dependent with context-independent MLPs using the approach 
described in Section 3.2. In addition, the Ring Array Processor (RAP) special purpose 
hardware, developed at ICSI (Morgan et aI., 1992), allowed rapid training of such 
large networks on large data sets. In order to reduce the number of weights in the 
MLP, we are currently exploring alternative architectures which apply the smoothing 
techniques described here to binary context inputs. 

6 CONCLUSIONS 
MLP-based probability estimation can be useful for both improving recognition accu­
racy and reducing memory needs for HMM-based speech recognition systems. These 
benefits, however, must be weighed against increased computational requirements. 
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We have presented a new MLP architecture and training procedure for modeling 
context-dependent phonetic classes with a sequence of distributions. Tests using the 
DARPA Resource Management database have shown improvements in recognition 
performance using this new approach, modeling only generalized biphone context 
categories. These results suggest that sharing input-to-hidden weights between context 
categories (and not retraining them during the context-dependent training phase) 
results in a hidden layer representation which is adequate for context-dependent as 
well as context-independent modeling, error-based smoothing of context-independent 
and context-dependent weights is effective for training a robust model, and using 
separate output layers and hidden-to-output weights corresponding to different context 
classes of different states of HMM: phone models is adequate to capture acoustic 
effects which change throughout the production of individual phonetic segments. 
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