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Abstract 

The occurence of chaos in recurrent neural networks is supposed to 
depend on the architecture and on the synaptic coupling strength. It is 
studied here for a randomly diluted architecture. By normalizing the 
variance of synaptic weights, we produce a bifurcation parameter, 
dependent on this variance and on the slope of the transfer function but 
independent of the connectivity, that allows a sustained activity and the 
occurence of chaos when reaching a critical value. Even for weak 
connectivity and small size, we find numerical results in accordance 
with the theoretical ones previously established for fully connected 
infinite sized networks. Moreover the route towards chaos is 
numerically checked to be a quasi-periodic one, whatever the type of the 
first bifurcation is (Hopf bifurcation, pitchfork or flip). 
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1 INTRODUCTION 

Most part of studies on recurrent neural networks assume sufficient conditions of 
convergence. Models with symmetric synaptic connections have dynamical properties 
strongly connected with those of spin-glasses. In particular, they have relaxationnal 
dynamics caracterised by the decreasing of a function which is analogous to the energy in 
spin-glasses (or free energy for models submitted to thermal noise). Networks with 
asymmetric synaptic connections lose this convergence property and can have more 
complex dynamics. but searchers try to obtain such a convergence because the relaxation 
to a stable network state is simply interpreted as a stored pattern. 

However, as pointed out by Hirsch (1989), it might be very interesting, from an 
engineering point of view. to investigate non convergent networks because their 
dynamical possibilities are much richer for a given number of units. Moreover, the real 
brain is a highly dynamic system. Recent neurophysiological findings have focused 
attention on the rich temporal structures (oscillations) of neuronal processes (Gray et al., 
1989), which might play an important role in information processing. Chaotic behavior 
has been found out in the nervous system (Gallez & Babloyantz, 1991) and might be 
implicated in cognitive processes (Skarda & Freeman. 1987). 

We have studied the emergent dynamics of a general class of non convergent networks. 
Some results are already available in this field. Sompolinsky et al. (1988) established 
strong theoretical results concerning the occurrence of chaos forfully connected networks 
in the thermodynamic limit (N - 00) by using the Dynamic Mean Field Theory. Their 
model is a continuous time. continuous state dynamical system with N fully connected 
neurons. Each connection Jij is a gaussian random variable with zero mean and a 
normalized variance fllN. As the Jij'S are independent. the constant term fl can be seen 
as the variance of the sum of the weights connected to a given unit. Thus. the global 
strength of coupling remains constant for each neuron as N increases. The output 
function of each neuron is sigmoidal with a slope g. Sompolinsky et al. established that, 
in the limit N - 00, there is a sharp transition from a stationary state to a chaotic flow. 
The onset of chaos is given by the critical value gJ=l. For gJ<1 the system admits the 
only fixed point zero, while for gJ >1 it is chaotic. The same authors performed 
simulations on finite and large values of N and showed the existence of an intermediate 
regime (nonzero stationary states or limit cycles) separating the stationary and the chaotic 
phase. but the routes to chaos were not systematically explored. The range of gJ where 
this intermediate behavior is observed shrinks as N increases. 

2 THE MODEL 

The hypothesis of a fully connected network being not biologically plausible. it could be 
interesting to inspect how far these results could be extended as the dilution increases for 
a general class of networks. The model we study is defined as follows: the number of 
units is N. and K is the fixed number of connections received by one unit (K>I). There is 
no connection from one unit to itself. The K connections are randomly selected (with an 
uniform law) among the N-l' s. The state of each neuron i at time t is characterized by its 
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output xi (t) which is a real variable varying between -1 and 1. The discrete and parallel 
dynamics is given by: 

Jij is the synaptic weight which couples the output of unit j to the input of unit i. 
These weights are random independent variables chosen with a uniform law, with zero 
menn and a normalized variance J21 K. Notice that, with such a normalization, the 
standard deviation of the sum of the weights afferent to a given neuron is the constant J. 

One has to distinguish two effects of coupling on the behavior of such a class of models. 
The first effect is due to the strength of coupling, independent of the number of 
connections. The second one is due to the architecture of coupling, which can be studied 
by keeping constant the global synaptic effect of coupling. The genericity of our model 
cancels the peculiar dynamic features which may occur due to geometrical effects. 
Moreover it allows to study a model at different scales of dilution. 

3 FIRST BIFURCATION 

For such a system, zero is always a fixed point and for low bifurcation parameter value it 
is the only fixed point and it is stable. Let us call Amax the eigenvalue of the matrix of 
synaptic weights with the greatest modulus and p = I Amaxl the spectral radius of this 
matrix. The loss of stability arises when the product gp is larger than 1. Our numerical 
simulations allow us to state that p is approximately equal to J for sufficiently large­
sized networks. This statement can be derived rigorously for an approximate regularized 
model in the thermodynamic limit (Doyon et aI., 1993). 

Table 1: Mean Value of the Bifurcation Parameter gJ over 30 Networks. 
Destabilization of the zero fixed point 1 Onset of Chaos 

Connectivity K 

4 
8 
16 
32 

128 
.954 / 1.337 
.950 / 1.449 
.951/1.434 
.961 / 1.360 

Number of neurons 
256 

.9651 1.298 

.966 1 1.301 

.9651 1.315 

.958 1 1.333 

512 
.9701 1.258 
.9781 1.233 
.969/ 1.239 
.972 I 1.246 

We have studied by intensive simulations on a Cray I-XMP computer the statistical 
spectral distribution for N ranging from 4 to 512 and for K ranging from 2 to 32. Figure 
1 shows two examples of spectra (for convenience, J is set to 1). The apparent drawing of 
a real axis is due to the real eigenvalue density but the distribution converges to a 
uniform one over the J radius disk, as N increases. A similar result has been theoretically 
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achieved for full gaussian matrices (Girko. 1985; Sommers et al.. 1988). Thus pquicldy 
decreases to J, so the loss of stability arises for a mean gJ value that increases to 1 for 
increasing size (Tab. 1). For a given N value, p is nearly independent of K . 

..... :. .. 

'. ~ ",­. . '.-

Figure 1: Plot of the Unit Disk and of the Eigenvalues in the Complex Plane. 
Left: 100 Spectra for N=64. K=4. Right: 10 Spectra for N=512. K=4. 

Three types of first bifurcation can occur, depending on the eigenvalue Ama.'t : 
a) Hopf Bifurcation: this corresponds to the appearance of oscillations. There are 

two complex conjugate eigenvalues with maximal modulus p. 
b) Pitchfork bifurcation: if Amax is real positive, the bifurcation arises when 

gAmax = 1. Zero loses its stability and two branches of stable equilibria emerge. 
c) Flip Bifurcation: for Amaxreal and negative a flip bifurcation occurs when 

g Amax = - 1. This corresponds to the appearance of a period two oscillation. 

As the network size increases, the proportion of Hopf bifurcations increases because the 
proportion of real Amax decreases, nearly independent of K . 

4 ROUTE TO CHAOS 

To study the following bifurcations, we chose the global observable: 

The value m(t) correctly characterizes all types of first bifurcation that can occur. Indeed 
the route to chaos is qualitatively well described by this observable, as we checked it by 
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studying simultaneously xi (I). The onset- of chaos was computed by testing the 
sensitivity on initial conditions for m(1) . We observed the onset of chaos occurs for quite 
low parameter values. The transient zone from fixed point to chaos shrinks slowly to 
zero as the network size increases (fab. 1). 

The qualitative study of the routes to chaos was made on a span of networks with various 
connectivity and quite important size. The route towards chaos that was observed was a 
quasi-periodic one in all cases with some variations due to the particular symmetry x­
- x. '~"he following figures are obtained by plotting m(l+l) versus m(1) after discarding the 
transient (Fig. 2). They are not qualitatively different with a reconstruction in a higher 
dimensional space. The dominant features are the following ones. 
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Figure 2: Example of route to chaos when the fust bifurcation is a Hopf one. 
(N=128, K=16) . 

a) After the first bifurcation, the zero fixed point has lost its stability. 
The series of points (m(I), m(t+l) densely covers a cycle (gJ=l.O). 

b) After the second Hopf bifurcation: projection of a T2 torus (gJ=l.23). 
c) Frequency locking on the T2 torus (gJ=1.247). 
d) Chaos (gJ=1.26). 
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When the first bifurcation is a Hopf one (Fig. 2a), it is followed by a second Hopf 
bifurcation (Fig. 2b). Then there is a frequency locking occuring on the T2 torus born 
from the second Hopf bifurcation (Fig. 2c), followed by chaos (Fig. 2d). This route is 
then a quasi-periodic one (Ruelle & Takens, 1971 ; Newhouse et al., 1978). A slightly 
different feature emerges when the first bifurcation is followed by a stable resonance due 
to discrete time occuring before the second Hopf bifurcation. Then the limit cycle reduces 
to periodic points. When the second bifurcation occurs, the resonance persists until chaos 
is reached. 

When the first bifurcation is a pitchfork, it is followed by a Hopf bifurcation for each 
stable point of the pitchfork (due to the symmetry x - -x). Then a second Hopf 
bifurcation occurs followed, via a frequency locking, by chaos. It follows then, despite 
the pitchfork bifurcation, a quasi-periodicity route. Notice that in this case, we get two 
symmetric strange attractors. When gJ increases, the two attractors fuse. 

For a first bifurcation of flip type, the route followed is like the one described by Bauer 
& Martienssen (1989). The flip bifurcation leads to an oscillatory system with two 
states. A first Hopf bifurcation arises followed by a second one leading to a quasi-periodic 
state, followed by a frequency locking preceeding chaos. 

5 CONCLUSION 

We have presented a type of neural network exhibiting a chaotic behavior when 
increasing a bifurcation parameter. As in Sompolinsky's model, gJ is the control 
parameter of the network dynamics. The variance of the synaptic weights being 
normalized, the bifurcation values are nearly independent of the connectivity K. The 
magnitude of dilution is not important for the behavior. The route to chaos by quasi­
periodicity seems to be generic. It suggests that such high-dimensional networks behave 
like low-dimensional dynamical systems. It could be much simpler to control such 
networks than a priori expected. 

From a biological point of view, we built our model to provide a tool that could be used 
to investigate the influence of chaotic dynamics in the cognitive processes in the brain. 
We clearly chose to simplify the biological complexity in order to understand a complex 
dynamic. We think that, if chaos plays a role in cognitive processes, it does neither 
depend on a specific architecture, nor on the exact internal modelling of the biological 
neuron. However, it could be interesting to introduce some biological caracteristics in the 
model. The next step will be to study the influence of non-zero entries on the behavior of 
the system, leading to the modelling of learning in a chaotic network. 
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