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Abstract 

We present an algorithm for creating a neural network which pro­
duces accurate probability estimates as outputs. The network im­
plements a Gibbs probability distribution model of the training 
database. This model is created by a new transformation relating 
the joint probabilities of attributes in the database to the weights 
(Gibbs potentials) of the distributed network model. The theory 
of this transformation is presented together with experimental re­
sults. One advantage of this approach is the network weights are 
prescribed without iterative gradient descent. Used as a classifier 
the network tied or outperformed published results on a variety of 
databases. 

1 INTRODUCTION 

This paper addresses the problem of modeling a discrete database. The database 
is viewed as a collection of independent samples from a probability distribution. 
This distribution is called the underlying distribution. In contrast, the empirical 
distribution is the distribution obtained if you take independent random samples 
from the database (with replacement). The task of creating a probability model 
can be separated into two parts. The first part is the problem of choosing statistics 
of the samples which are expected to accurately represent the underlying distribu­
tion. The second part is the problem of choosing a model which is consistent with 
these statistics. Under reasonable assumptions, the optimal solution to the second 
problem is the method of Maximum Entropy. For a broad class of statistics, the 
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Maximum Entropy solution is a Gibbs probability distribution (Slepian, 1972). In 
this paper, the background and theoretical result of a transformation from joint 
statistics to a Gibbs energy (or network weight) representation is presented. We 
then outline the experimental test results of an efficient algorithm implementing 
this transform without using gradient descent iteration. 

2 BACKGROUND 

Define a set T to be the set of attributes (or fields) in a database. For a particular 
entry (or record) of the database, define the associated set of attribute values to be 
the configuration W of the attributes. The set of attribute values associated with 
a subset beT is called a sub configuration Wb. Using this set notation the Gibbs 
probability distribution may be defined: 

pew) = Z-l . eVT(w) (1) 

where 
(2) 

bCT 
The function V is called the energy. The function Jb, called the potential junction, 
defines a real value for every sub configuration of the set b. Z is the normalizing 
constant that makes the sum of probabilities of all configurations equal to unity. 

Prior work in the neural network literature using the Gibbs distribution (such as 
the Boltzmann Machine) has primarily used second order models (Jb = 0 if Ibl > 2) 
(Hinton, 1986). By adding new attributes not in the original database, second order 
potentials have been used to model complex distributions. The work presented in 
this paper, in contrast, uses higher order potentials to model complex probability 
distributions. We begin by considering the case where every potential of every order 
is used to model the distribution. 

The Principle of Inclusion-Exclusion from set theory states that the following two 
equations are equivalent: 

g(A) Lf(b) (3) 
b~A 

f(A) L(-l)IA-bl g(b). (4) 
bCA 

The method of inverting an equation from the form of (3) into one in the form of 
(4) is a special case of Mobius Inversion. Clifford-Hammersley (Kindermann, 1980) 
used this relation to invert formula (2): 

JA(w) = L(-l)IA-b l Vb(w) (5) 
bCA 

Define the probability of a sub configuration p(Wb) to be the probability that the 
attributes in set b take on the values defined in the configuration w. Using (1) 
to describe the probability distribution of sub configurations, equation (5) can be 
written: 

JA(w) = L(-l)IA-b l In( p(Wb» 
b~A 

(6) 
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3 A TRANSFORMATION TO GIBBS POTENTIALS 

Equation (6) provides a technique for modeling distributions by potential functions 
rather than directly through the observable joint statistics of sets of attributes. If 
the model is truncated by setting high order potentials to zero, then the energy 
model becomes an estimate of the model obtained by collecting the joint statistics, 
rather than an exact equivalent. If equation (6) is used directly, the error in the 
energy due to setting all potentials of order d to zero grows quickly with d. For 
this reason (6) must be normalized if it is going to be used in a truncated modeling 
scheme. A normalization version of equation (2) that corrects for the unequal 
number of potentials of different orders is: 

( IAI- 1)-1 
VA(w) = L Ibl- 1 Jb(W) 

b~A 

(7) 

This equation can be inverted to show the surprising result, a weight associated 
with WA: 

JA(W) = In(PA(w» - (IAI- 1)-1 L In(Pb(w» 
tEA 

b=A-t 

(8) 

For example, with three attribute values {x, y, z}, the following potentials are de­
fined: 

J{x} = In(p(x)) 

J{y} = In(p(y)) 

J{z} = In(p(z)) 

( p(xy) ) 
J{xy} = In p(x)p(y) 

( p(yz) ) 
J{yz} = In p(y)p(z) 

( p(xz) ) 
J{xz} = In p(x)p(z) 

J{xyz} = In ( 
p(xyz) ) 

ylp(xy)p(yz)p(xz) 

For a given database sample, a potential is activated if all of its defined attribute 
values are true for the sample. The weighted sum of all activated potentials recovers 
an approximation of the probability of the database sample. If all potentials of every 
order have been used to create the model, then this approximation is exactly the 
probability of the sample in the empirical distribution. The correct weighting is 
given by equation (7). For example it is easily verified that: 

In(p(xyz)) (2) -1 (2)-1 
2 J{xyz} + 1 (J{xy} + J{xz} + J{yz}) 

(2) -1 
+ 0 (J{x} + J{y} + J{z}). 
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The Gibbs model truncated to second order potentials would estimate the proba­
bility in this example by: 

In(p( xyz)) ~ (2) -1 (2)-1 
1 (J{xy} + J{xz} + J{yz}) + ° (J{x} + J{y} + J{z})' 

~ In Vp(xy)p(yz)p(xz) 

4 PROOF OF THE INVERSION FORMULA 

Theorem: 
Let T be a finite set . Each element of T will be called an attribute. Each attribute 
can take on one of a finite set of states called attribute values. A collection of 
attribute values for every element of T is called a configuration w. For all A ~ T 
(including both the empty set A = 0 and the full set A = T), let VA(w) and JA(W) 
be functions mapping the states of the elements of A to the real numbers. Define 
(r;:) = m!j(( m - n)! . n!) to be "m choose n." 
Let V0(w) = 0, J0(W) = 0, and let VA(W) = JA(w) if IAI = l. 
Then for IAI > 1: 

and L (IAI- 1)-1 . Vb(w) 
bCA 

Ibl=IAI-l 

(9) 

(10) 

are equivalent in that any assignment of VA and J A values for all A ~ T will satisfy 
(9) if and only if they also satisfy (1 0). 

Proof: 
Let .:7 be any assignment ofthe values JA(W) for all A ~ T. Let V be any assignment 
of all the values VA(W) for all A ~ T. Then clearly (9) maps any assignment .:7 to a 
unique V. We will represent this mapping by the function I, so (9) is abbreviated 
V = 1(.:7). Similarly (10) maps any assignment V to a unique.:7. Equation (10) 
will be abbreviated .:7 = g(V). The result of Lemma Cl below, applied with the 
value 1) set to n, shows that l(g(V)) = V. In Lemma C2 below, it is shown 
g(/(.:7)) = .:7. Therefore the equations (9) and (10) are inverse one-to-one mappings 
and the association of assignments between .:7 and V are identical for the two 
equations. Q.E.D. 

Lemma Cl: 
Rather than simply showing l(g(V)) = V, a more general result will be shown. Since 
the number of potentials of a given order increases exponentially with the order, it 
is useful to approximate the energy of a configuration by defining a maximum order 
1) such that all potentials of greater order are assumed to be zero 

Jb(W) = 0 \:I b such that Ibl > 1). 

Let VA(W) be the resulting approximation to the energy VA(W). Let IAI = n. 
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Given 
JA(W) = VA(W) - L (n - 1)-1 . ~(w) 

bCA 
Ibl=n-l 

and the order V approximation to equation (7): 

then 

Note: 

v ( 1)-1 
VA(w) = L ~ ~ 1 L Jb(W), 

i=l bCA 
IbT=. 

A n-( 1) -1 

VA(W) = L V-I Vb(w). 
bCA 

Ib!=V 

For the case V = n, the approximation is exact 

VA(w) = VA(W), 
and so f(g(V» = V is shown. 

(11) 

(12) 

The lemma's result has a simple interpretation. The energy of a configuration is 
approximated by a scaled average of the energies of the configurations of order 
V. Using equation (1) to relate energies to probabilities, shows that the estimated 
probability is a scaled geometric mean of the order V marginal probabilities. 

Proof: 
We start with the given equation for VA(W) 

v ( 1)-1 L ~ ~ 1 L Jb(w). 
i=l b~A 

Ibl=· 

Use equation (11) to substitute Jb(W) out of the equation: 

VA(W) t (~~ :) -1 ~ (~(W) - cCt;;~l (i - 1)-1 . Vc(W») 

Ibl=. Icl=lbl-l 

Separate the term in the first sum where i = V 

( 1)-1 ("-1 (1)-1 ) 
VA(w) ,E; ~ 1 V.(w) + ~ : ~ 1 ~. V.(w) 

"( 1)-1 -2: ~~1 L 2: (i-1)-1·Vc(w). 
i=l b~A cCb,lbl~l 

Ibl=. 1c1=lbl-l 

By subtracting VA(W) from both sides using equation (12) and noting the second 
summation over i has no terms when i = 1 we see that it is sufficient to show 

I:(:~;rLV.(W) t(~~;rL L (i-W'· V,(w). 
i=l bCA i=2 b~A cCb 

Ihl=. Ibl=. Icl=lbl-l 
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The right hand side inner double summation counts a given llc(w) once for every b 
such that e C b ~ A with i = Ibl = lei + 1. This occurs exactly IAI- lei = n - i + 1 
times. Thus 

V-I ( 1)-1 v (1)-1 ·+1 L ~ ~ 1 L ~(w) = L ~ ~ 1 L n ~ ~ 1 . Vc(w). 
i=l "CA i=2 cCA 

1"1=. Icl=i-l 

N ow perform a change of variables. Let j = i-Ion the right hand side 

~ (~ - ;) -1 L ~(w) = ~ (n ~ 1) -1 L n . j . Vc(w). 
i=l t - "CA j=l J cCA J 

1"1=. !cl=j 

Clearly both sides are identical since 

n-t 

Q.E.D. 

Lemma C2: g(/(:1)) = :1 
Let IAI = n. It is sufficient to show that substituting ~ out of (10) using (9) yields 
an identity: 

JA(W) = VA(w) - L (n _1)-1 ·1Ib(w) 
bCA,n;tl 
Ibl=n-l 

( n - 1) -1 -1 (Ibl - 1)-1 L Ibl- 1 Jb(W) - L (n -1) L lel- 1 Jc(w). 
bCA bCA,n;tl cCb 

- Ibl=n-l-

Separate the term in the first sum for which b = A 
JA(W) = JA(w) 

( n_l)-l -1 (lbl-l)-l 
+ L Ibl- 1 h(w) - L (n - 1) L lel- 1 Jc(w). 

bCA "CA,n;tl cCb 
b;tA Ibl=n-l-

Subtract J A (w) from both sides. The right hand side double sum counts a given 
Jc(w) once for every b such that e ~ b C A with Ibl = IAI- 1 = n - 1. This occurs 
IAI- lei = n - lei times. It is sufficient to show 

Both sides are identical since: 

(~ _ 1)-1 
Z - 1 

cCA,ctA 

n -lei 
n-l 

n-2 ( )
-1 

lel- 1 Jc(w). 

n - z 
n-l 

(~ _ 2)-1 
Z - 1 

Q.E.D. 
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5 USING THE INVERSION FORMULA TO SET 
NETWORK WEIGHTS 

Our method of probability estimation is to first collect empirical frequencies of 
patterns (sub configurations) from the database. (An efficient hash table implemen­
tation of the algorithm is described in (Miller, 1993). The basic idea is to remove 
from the database a pattern with low potential whenever there is a hash collision 
which prevents a new pattern count from being stored.) Second, interpreting these 
frequencies as probabilities, we convert each pattern frequency to a potential using 
equation (8). We assume patterns with unknown or uncalculated frequencies have 
zero potential. Low order patterns which never occur are assigned a large negative 
potential (this approximation is needed to model events with zero probability in 
the empirical distribution). Finally, we calculate the probability of any new pattern 
not in the training set using the neural network implementation of equations (7) 
and (1). 

6 RESULTS 

One way to validate the performance of a probability model is to test its performance 
as a classifier. The probability model is used as a classifier by calculating the 
probabilities of each unknown class value together with the known attribute values. 
The most probable combination is then chosen as the predicted class. Used as a 
classifier the Gibbs model tied or outperformed published results on a variety of 
databases. Table 1 outlines results on three datasets taken from the UC Irvine 
archive (Murphy, 1992). The Gibbs model results were collected from the very 
first experiment using the algorithm with the datasets. No difficult parameter 
adjustment is necessary to get the algorithm to classify at these rates. The iris 
database has 4 real value attributes. Each attribute was quantized into a decile 
ranking for use by the algorithm. 

7 CONCLUSION 

A new method of extracting a Gibbs probability model from a database has been 
presented. The approach uses the Principle of Inclusion-Exclusion to invert a set of 
collected statistics into a set of potentials for a Gibbs energy model. A hash table 
implementation is used to efficiently process database records in order to collect the 
most important potentials, or weights, which can be stored in the available memory. 
Although the model is designed to give accurate probability estimates rather than 
simply class labels, the model in practice works well as a classifier on a variety of 
databases. 
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Table 1: Summary of Classification Results 

Database A C R Train Test Trials Gibbs Rate Compare 

House Voting 16 2 435 335 100 50 95.3% 95% 
Iris 4 3 150 120 30 100 96.3% n.a. 
Iris 4 3 150 149 1 1000 97.1% 98.0% 
Breast Cancer 9 2 699 599 100 100 97.3% n.a. 
Breast Cancer 9 2 369 200 169 100 95.7% 93.7% 

A = Attribute count in the database, excluding the class attribute 
C = Class count 
R = Record count 

Train = Number of records used to create the energy for one trial 
Test = Number of records tested in a single trial 

Trials = Number of independent train-test trials used to calculate the rate 
Gibbs Rate = Gibbs energy model classification rate 

Compare = Baseline classification result of other methods (Schlimmer, 1987), 
(Weiss, 1992),(Zhang, 1992) respectively 
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