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Abstract 

The planar thallium-201 myocardial perfusion scintigram is a widely used 
diagnostic technique for detecting and estimating the risk of coronary 
artery disease. Neural networks learned to interpret 100 thallium scinti­
grams as determined by individual expert ratings. Standard error back­
propagation was compared to standard LMS, and LMS combined with 
one layer of RBF units. Using the "leave-one-out" method, generaliza­
tion was tested on all 100 cases. Training time was determined automati­
cally from cross-validation perfonnance. Best perfonnance was attained 
by the RBF/LMS network with three hidden units per view and compares 
favorably with human experts. 

1 Introduction 

Coronary artery disease (CAD) is one of the leading causes of death in the Western World. 
The planar thallium-201 is considered to be a reliable diagnostic tool in the detection of 

• Current address: Geriatrics, Research, Educational and Clinical Center, VA Medical Center, Salt 
Lake City, Utah. 
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CAD. Thallium is a radioactive isotope that distributes in mammalian tissues after interve­
nous administration and is imaged by a gamma camera. The resulting scintigram is visually 
interpreted by the physician for the presence or absence of defects - areas with relatively 
lower perfusion levels. In myocardial applications, thallium is used to measure myocardial 
ischemia and to differentiate between viable and non-viable (infarcted) heart muscle (po­
host and Henzlova, 1990). 

Diagnosis of CAD is based on the comparison of two sets of images, one set acquired 
immediately after a standard effort test (BRUCE protocol), and the second following a 
delay period of four hours. During this delay, the thallium redistributes in the heart muscle 
and spontaneously decays. Defects caused by scar tissue are relatively unchanged over 
the delay period (fixed defect), while those caused by ischemia are partially or completely 
filled-in (reversible defect) (Beller, 1991; Datz et al., 1992). 

Image interpretation is difficult for a number of reasons: the inherent variability in biolog­
ical systems which makes each case essentially unique, the vast amount of irrelevant and 
noisy information in an image, and the "context-dependency" of the interpretation on data 
from many other tests and clinical history. Interpretation can also be significantly affected 
by attentional shifts, perceptual abilities, and mental state (Franken Jr. and Berbaum, 1991; 
Cuar6n et al., 1980). 

While networks have found considerable application in ECG processing (e.g. (Artis et al., 
1991)) and clinical decision-making (Baxt, 1991b; Baxt, 1991a), they have thus far found 
limited application in the field of nuclear medicine. Non-cardiac imaging applications in­
clude the grading of breast carcinomas (Dawson et al., 1991) and the discrimination of nor­
mal vs. Alzheimer's PET scans (Kippenhan et al., 1990). Of the studies dealing specifically 
with cardiac imaging, neural networks have been applied to several problems in cardiology 
including the identification of stenosis (Porenta et al., 1990; Cios et al., 1989; Cios et al., 
1991; Cianflone et al., 1990; Fujita et al., 1992). These studies encouraged us to explore 
the use of neural networks in the interpretation of cardiac scintigraphy. 

2 Methods 

We trained one network consisting of a layer of gaussian RBF units in an unsupervised fash­
ion to discover features in circumferential profiles in planar thallium scintigraphy. Then a 
second network was trained in a supervised way to map these features to physician's visual 
interpretations of those images using the delta rule (Widrow and Hoff, 1960). This archi­
tecture was previously found to compare favorably to other network learning algorithms 
(2-layer backpropagation and single-layer networks) on this task (Rosenberg et al., 1993; 
Erel et al., 1993). 

In our experiments, all of the input vectors representing single views f were first normalized 

to unit length V = IIfll . The activation value of a gaussian unit, OJ, is then given by: 

netj 
O · = exp(--) 

1 w 

(1) 

(2) 

where j is an index to a gaussian unit and i is an input unit index. The width of the gaussian, 
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Figure 1: The network architecture. The first layer (Input) encoded the three circumferen­
tial profiles representing the three views, anterior (ANT), left lateral oblique (LAO). and 
left lateral (LAT). The second layer consisted of radial basis function (RBF) units, the third 
layer, semi-linear units trained in a supervised fashion. The outputs of the network corre­
sponded to the visual scores as given by the expert observer. An additional unit per view 
encoded the scaling factor of the input patterns lost as a result of input normalization. 

given by w, was fixed at 0.25 for all units 1• 

The gaussian units were trained using a competitive learning rule which moves the center 
of the unit closest to the current input pattern (Omax, i.e. the "winner") closer to the input 
pattern2: 

~tui,winner = 1](v; - Wi,winner) (3) 

2.1 Data Acquisition and Selection 

Scintigraphic images were acquired for each of three views: anterior (ANT), left lateral 
oblique (LAO 45), and left lateral (LAT) for each patient case. Acquisition was performed 
twice, once immediately following a standard effort test and once following a delay period 
of four hours. Each image was pre-processed to produce a circumferential profile (Garcia 
et aI., 1981; Francisco et aI., 1982) , in which maximum pixel counts within each of 60, 
6° contiguous segmental regions are plotted as a function of angle (Garcia, 1991). Pre­
processing involved positioning of the region of interest (ROI), interpolative background 
subtraction, smoothing and rotational alignment to the heart's apex (Garcia, 1991). 

1 We have considered applying the learning rule to the unit widths (w) as well as the RBF weights, 
however we have not as yet pursued this possibility. 

2Following Rumelhart and Zipser (Rumelhart and Zipser, 1986), the other units were also pulled 
towards the input vector, although to a much smaller extent than the winner. We used a ratio of 1 to 
100. 

3The profiles were generated using the Elscint CTL software package for planar quantitative 
thallium-20l based on the Cedars-Sinai technique (Garcia et aI., 1981; Maddahi et aI., 1981; Areeda 
et aI., 1982). 
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Lesion 

single 

multiple 

Total 

mild moderate severe Total 

12 5 0 17 

16 16 11 43 

28 21 11 60 

Table 1: Distribution of Abnormal Cases as Scored by the Expert Observer. Defects occur­
ring in any combination of two or more regions (even the proximal and distal subregions 
of a single area) were treated as one multiple defect. The severity level of multiple lesions 
was based on the most severe lesion present. 

Cases were pre-selected based on the following criteria (Beller, 1991): 

• Insufficient exercise. Cases in which the heart rate was less than 130 b.p.m. were 
eliminated, as this level of stress is generally deemed insufficient to accurately 
distinguish normal from abnormal conditions. 

• Positional abnormalities. In a few cases, the "region of interest" was not posi­
tioned or aligned correctly by the technician. 

• Increased lung uptake. Typically in cases of multi-vessel disease, a significant 
proportion of the perfusion occurs in the lungs as well as in the heart, making it 
more difficult to determine the condition of the heart due to the partially overlap­
ping positions of the heart and lungs. 

• Breast artifacts. 

Cases were selected at random between August, 1989 and March, 1992. Approximately a 
third of the cases were eliminated due to insufficient heart rate, 4-5% due to breast artifacts, 
4% due to lung uptake, and 1-2% due to positional abnormalities. A set of one hundred 
usable cases remained. 

2.2 Visual Interpretation 

Each case was visually scored by a single expert observer for each of nine anatomical re­
gions generally accepted as those that best relate to the coronary circulation: Septal: prox­
imal and distal, Anterior: proximal and distal, Apex, Inferior: proximal and distal, and 
Posterior-Lateral: proximal and distal. Scoring for each region was from normal (I) to 
severe (4), indicating the level of the observed perfusion deficit. 

Intra-observer variability was examined by having the observer re-interpret 17 of the cases 
a second time. The observer was unable to remember the cases from the first reading and 
could not refer to the previous scores. 

Exact matches were obtained on 91.5% of the regions; only 8 of the 153 total regions (5%) 
were labeled as a defect (mild, moderate or severe) on one occasion and not on the other. 
All differences, when they occurred, were of a single rating level4• 

4In contrast, measured inter-observer variability was much higher. A set of 13 cases was individ-
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2.3 The Network Model 

The input units of the network were divided into 3 groups of 60 units each, each group 
representing the circumferential profile for a single view. A set of 3 RBF units were assigned 
to each input group. Then a second layer of weights was trained using the delta rule to 
reproduce the target visual scores assigned by the expert observer. The categorical visual 
scores were translated to numerical values to make the data suitable for network learning: 
normal = 0.0, mild defect = 0.3, moderate defect = 0.7, and severe defect = 1.0. 

In order to make efficient use of the available data, we actually trained 100 identical net­
works; each network was trained on a subset of 99 of the 100 cases and tested on the re­
maining one. This procedure, sometimes referred to as the "leave-one-out" or "jack-knife" 
method, enabled us to determine the generalization performance for each case. This pro­
cedure was followed for both the RBF and the delta rule training5. Training of a single 
network took only a few minutes of Sun 4 computer time. 

3 Results 

Because of the larger numbers of confusions between normal and mild regions in both the 
inter- and intra-observer scores, disease was defined as moderate or severe defects. The 
threshold value dividing the output values of the network into these two sets was varied 
from 0 to 1 in 0.01 step increments. The number of agreements between the expert observer 
and the network were computed for each threshold value. The resulting scores, accumulated 
over all threshold values, were plotted as a Receiver Operating Characteristic (ROC) curve. 

Best performance (percent correct) was achieved with a threshold value of 0.28, which 
yielded an overall accuracy of 88.7% (798/900 regions) on the stress data. However, this 
value of the threshold heavily favored specificity over sensitivity due to the preponderance 
of normal regions in the data. Using the decision threshold which maximized the sum 
of sensitivity and specificity, 0.10, accuracy dropped to 84.9% (764/900) but sensitivity 
improved to 0.771 (121/157), and specificity was 0.865 (643/743). 

3.1 Distinguishing Fixed vs. Reversible Defects 

In order to take into account the delayed distribution as well as the stress set of images, the 
network was essentially duplicated: one network processed the stress data, and the other, 

ually interpreted by 3 expert observers in a previous experiment (Rosenberg et aI., 1993). Percent 
agreement (exact matches) between the observers was 82% (288/351). Of the 63 mis-matches, 5 or 
about 8% of the regions were of 2 levels of severity. There were no differences of 3 levels of severity. 
Approximately two-thirds of the disagreements were between normal and mild regions. These results 
indicate that the single observer data employed in the present study are more reliable than the mixed 
consensus and individual scores used previously. 

5Details of network learning were as follows: Each of the 100 networks was initialized and trained 
in the same way. RBF-to-output unit weights were initialized to small random values between 0.5 and 
-0.5. Input-to-RBF unit weights were first randomized and then normalized so that the weight vectors 
to each RBF unit were of unit length. Unsupervised, competitive training of the RBF units continued 
for 100 "epochs" or complete sweeps through the set of 99 cases: 20 epochs with a learning rate (11) 
of 0.1 followed by 80 epochs at 0.01 without momentum (0'). Supervised training using a learning 
rate of 0.05 and momentum 0.9, was terminated based on cross-validation testing after 200 epochs. 
Further training led to over-training and poorer generalization. 
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the redistribution data. (For details, see (Erel et al., 1993).) 

The combined network exhibited only a limited ability to distinguish between scar and 
ischemia. Performance on scar detection was good (sens. 0.728 (75/103), spec. 0.878 
(700{797», but the sensitivity of the network on ischemia detection was only 0.185 (10/54). 
This result may be explained, at least in part, by the much smaller number of ischemic re­
gions included in the data set as compared with scars (54 versus 103). 

4 Conclusions and Future Directions 

We suspect that our major limitation is in defect sampling. In order that a statistical system 
(networks or otherwise) generalize well to new cases, the data used in training must be 
representative of the full population of data likely to be sampled. This is unlikely to happen 
when the number of positive cases is on the order of 50, as was the case with ischemia, 
since each possible defect location, plus all the possible combinations of locations must be 
included. 

A variant ofbackpropagation, called competitive backpropagation, has recently been devel­
oped which is claimed to generalize appropriately in the presence of multiple defects (Cho 
and Reggia, 1993). Weights in this network are constrained to take on positive values, 
so that diagnoses made by the system add constructively. In a standard backpropagation 
network, multiple diseases can cancel each other out, due to complex interactions of both 
positive and negative connection strengths. We are currently planning to investigate the 
application of this learning algorithm to the problem of ischemia detection. 

Other improvements and extensions include: 

• Elicit confidence ratings. Expert visual interpretations could be augmented by 
degree of confidence ratings. Highly ambiguous cases could be reduced in im­
portance or eliminated. The ratings could also be used as additional targets for 
the network6: cases indicated by the network with low levels of confidence would 
require closer inspection by a physician. Initial results are promising in this regard. 

• Provide additional information. We have not yet incorporated clinical history, 
gender, and examination EKG. Clinical history has been found to have a profound 
impact on interpretation of radiographs (Doubilet and Herman, 1981). The inclu­
sion of these variables should allow the network to approximate more closely a 
complete diagnosis, and boost the utility of the network in the clinical setting. 

• Add constraints. Currently we do not utilize the angles that relate the three views. 
It may be possible to build these angles in as constraints and thereby cut down on 
the number of free network parameters. 

• Expand application. Besides planar thallium, our approach may also be applied 
to non-planar 3-D imaging technologies such as SPECT and other nuclear agents or 
stress-inducing modalities such as dipyridamole. Preliminary results are promis­
ing in this regard. 

6See (fesauro and Sejnowski, 1988) for a related idea. 
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