
Feudal Reinforcement Learning

Peter Dayan
CNL

The Salk Institute
PO Box 85800

San Diego CA 92186-5800, USA
dayan~helmholtz.sdsc.edu

Geoffrey E Hinton
Department of Computer Science

University of Toronto
6 Kings College Road, Toronto,

Canada M5S 1A4
hinton~ai.toronto.edu

Abstract

One way to speed up reinforcement learning is to enable learning to
happen simultaneously at multiple resolutions in space and time.
This paper shows how to create a Q-Iearning managerial hierarchy
in which high level managers learn how to set tasks to their sub­
managers who, in turn, learn how to satisfy them. Sub-managers
need not initially understand their managers' commands. They
simply learn to maximise their reinforcement in the context of the
current command.
We illustrate the system using a simple maze task .. As the system
learns how to get around, satisfying commands at the multiple
levels, it explores more efficiently than standard, flat, Q-Iearning
and builds a more comprehensive map.

1 INTRODUCTION

Straightforward reinforcement learning has been quite successful at some rela­
tively complex tasks like playing backgammon (Tesauro, 1992). However, the
learning time does not scale well with the number of parameters. For agents solv­
ing rewarded Markovian decision tasks by learning dynamic programming value
functions, some of the main bottlenecks (Singh, 1992b) are temporal resolution -
expanding the unit of learning from the smallest possible step in the task, division­
and-conquest - finding smaller subtasks that are easier to solve, exploration, and
structural generalisation - generalisation of the value function between different 10-

271

272 Dayan and Hinton

cations. These are obviously related - for instance, altering the temporal resolution
can have a dramatic effect on exploration.

Consider a control hierarchy in which managers have sub-managers, who work
for them, and super-managers, for whom they work. If the hierarchy is strict
in the sense that managers control exactly the sub-managers at the level below
them and only the very lowest level managers can actually act in the world, then
intermediate level managers have essentially two instruments of control over their
sub-managers at any time - they can choose amongst them and they can set them
sub-tasks. These sub-tasks can be incorporated into the state of the sub-managers
so that they in turn can choose their own sub-sub-tasks and sub-sub-managers to
execute them based on the task selection at the higher level.

An appropriate hierarchy can address the first three bottlenecks. Higher level
managers should sustain a larger grain of temporal resolution, since they leave the
sub-sub-managers to do the actual work. Exploration for actions leading to rewards
can be more efficient since it can be done non-uniformly - high level managers can
decide that reward is best found in some other region of the state space and send
the agent there directly, without forcing it to explore in detail on the way.

Singh (1992a) has studied the case in which a manager picks one of its sub-managers
rather than setting tasks. He used the degree of accuracy of the Q-values of sub­
managerial Q-Iearners (Watkins, 1989) to train a gating system (Jacobs, Jordan,
Nowlan & Hinton, 1991) to choose the one that matches best in each state. Here
we study the converse case, in which there is only one possible sub-manager active
at any level, and so the only choice a manager has is over the tasks it sets. Such
systems have been previously considered (Hinton, 1987; Watkins, 1989).

The next section considers how such a strict hierarchical scheme can learn to choose
appropriate tasks at each level, section 3 describes a maze learning example for
which the hierarchy emerges naturally as a multi-grid division of the space in
which the agent moves, and section 4 draws some conclusions.

2 FEUDAL CONTROL

We sought to build a system that mirrored the hierarchical aspects of a feudal
fiefdom, since this is one extreme for models of control. Managers are given
absolute power over their sub-managers - they can set them tasks and reward
and punish them entirely as they see fit. However managers ultimately have to
satisfy their own super-managers, or face punishment themselves - and so there is
recursive reinforcement and selection until the whole system satisfies the goal of the
highest level manager. This can all be made to happen without the sub-managers
initially "understanding" the sub-tasks they are set. Every component just acts to
maximise its expected reinforcement, so after learning, the meaning it attaches to a
specification of a sub-task consists of the way in which that specification influences
its choice of sub-sub-managers and sub-sub-tasks. Two principles are key:

Reward Hiding Managers must reward sub-managers for doing their bidding
whether or not this satisfies the commands of the super-managers. Sub-managers
should just learn to obey their managers and leave it up to them to determine what

Feudal Reinforcement Learning 273

it is best to do at the next level up. So if a sub-manager fails to achieve the sub-goal
set by its manager it is not rewarded, even if its actions result in the satisfaction of
of the manager's own goal. Conversely, if a sub-manager achieves the sub-goal it
is given it is rewarded, even if this does not lead to satisfaction of the manager's
own goal. This allows the sub-manager to learn to achieve sub-goals even when
the manager was mistaken in setting these sub-goals. So in the early stages of
learning, low-level managers can become quite competent at achieving low-level
goals even if the highest level goal has never been satisfied.

Information Hiding Managers only need to know the state of the system at the
granularity of their own choices of tasks. Indeed, allowing some decision making
to take place at a coarser grain is one of the main goals of the hierarchical decom­
position. Information is hidden both downwards - sub-managers do not know
the task the super-manager has set the manager - and upwards - a super-manager
does not know what choices its manager has made to satisfy its command. How­
ever managers do need to know the satisfaction conditions for the tasks they set
and some measure of the actual cost to the system for achieving them using the
sub-managers and tasks it picked on any particular occasion.

For the special case to be considered here, in which managers are given no choice
of which sub-manager to use in a given state, their choice of a task is very similar
to that of an action for a standard Q-Iearning system. If the task is completed
successfully, the cost is determined by the super-manager according to how well (eg
how quickly, or indeed whether) the manager satisfied its super-tasks. Depending
on how its own task is accomplished, the manager rewards or punishes the sub­
manager responsible. When a manager chooses an action, control is passed to the
sub-manager and is only returned when the state changes at the managerial level.

3 THE MAZE TASK

To illustrate this feudal system, consider a standard maze task (Barto, Sutton &
Watkins, 1989) in which the agent has to learn to find an initially unknown goal.
The grid is split up at successively finer grains (see figure 1) and managers are
assigned to separable parts of the maze at each level. So, for instance, the level 1
manager of area 1-(1,1) sets the tasks for and reinforcement given to the level 2
managers for areas 2-(1,1), 2-(1,2), 2-(2,1) and 2-(2,2). The successive separation
into quarters is fairly arbitrary - however if the regions at high levels did not cover
contiguous areas at lower levels, then the system would not perform very well.

At all times, the agent is effectively performing an action at every level. There are
five actions, N5EW and "', available to the managers at all levels other than the first
and last. NSEW represent the standard geographical moves and'" is a special action
that non-hierarchical systems do not require. It specifies that lower level managers
should search for the goal within the confines of the current larger state instead of
trying to move to another region of the space at the same level. At the top level,
the only possible action is "'; at the lowest level, only the geographical moves are
allowed, since the agent cannot search at a finer granularity than it can move.

Each manager maintains Q values (Watkins, 1989; Barto, Bradtke & Singh, 1992)
over the actions it instructs its sub-managers to perform, based on the location of

274 Dayan and Hinton

Figure 1: Figure 1: The Grid Task. This shows how the maze is divided up at
different levels in the hierarchy. The 'u' shape is the barrier, and the shaded square
is the goal. Each high level state is divided into four low level ones at every step.

the agent at the subordinate level of detail and the command it has received from
above. So, for instance, if the agent currently occupies 3-(6,6), and the instruction
from the level a manager is to move South, then the 1-(2,2) manager decides upon
an action based on the Q values for NSEW giving the total length of the path to
either 2-(3,2) or 2-(4,2). The action the 1-(2,2) manager chooses is communicated
one level down the hierarchy and becomes part of the state determining the level 2
Q values.

When the agent starts, actions at successively lower levels are selected using the
standard Q-Iearning softmax method and the agent moves according to the finest
grain action (at level 3 here). The Q values at every level at which this causes

Steps to Goal
1e+04

7
5

3

2
1.5

1e+03

7
5

3

2
1.5

1e+02

7
5

3

2

"\
\ \ ,
\ \ , \
\ ',~
. " \ -
'<\
~-

~

-

-...
"" ---~ -----

r-------. ---'. -'.
". -. -- .. ~- .. -----

.............. _- .

Feudal Reinforcement Learning 275

-+ -

---- -

-- -
... _--------- ...

F-Q Task 1
F'-=-Q-Task 2
S.:(j-fask 1

S-QTask 2

1.5 Iterations
0 .00 100.00 200.00 300.00 400.00 500.00

Figure 2: Learning Performance. F-Q shows the performance of the feudal an:::hi­
tecture and S-Q of the standard Q-Iearning architecture.

a state transition are updated according to the length of path at that level, if the
state transition is what was ordered at all lower levels. This restriction comes from
the constraint that super-managers should only learn from the fruits of the honest
labour of sub-managers, ie only if they obey their managers.

Figure 2 shows how the system performs compared with standard, one-step, Q­
learning, first in finding a goal in a maze similar to that in figure I, only having
32x32 squares, and second in finding the goal after it is subsequently moved. Points
on the graph are averages of the number of steps it takes the agent to reach the goal
across all possible testing locations, after the given number of learning iterations.
Little effort was made to optimise the learning parameters, so care is necessary in
interpreting the results.

For the first task the feudal system is initially slower, but after a while, it learns
much more quickly how to navigate to the goal. The early sloth is due to the
fact that many low level actions are wasted, since they do not implement desired
higher level behaviour and the system has to learn not to try impossible actions or
* in inappropriate places. The late speed comes from the feudal system's superior
exploratory behaviour. If it decides at a high level that the goal is in one part of the
maze, then it has the capacity to specify large scale actions at that level to take it
there. This is the same advantage that Singh's (1992b) variable temporal resolution
system garners, although this is over a single task rather than explicitly composite
sub-tasks. Tests on mazes of different sizes suggested that the number of iterations
after which the advantage of exploration outweighs the disadvantage of wasted
actions gets less as the complexity of the task increases.

A similar pattern emerges for the second task. Low level Q values embody an
implicit knowledge of how to get around the maze, and so the feudal system can
explore efficiently once it (slowly) learns not to search in the original place.

276 Dayan and Hinton

Figure 3: The Learned Actions. The area of the boxes and the radius of the central
circle give the probabilities of taking action NSEW and * respectively.

Figure 3 shows the probabilities of each move at each location once the agent has
learnt to find the goal at 3-(3,3). The length of the NSEW bars and the radius
of the central circle are proportional to the probability of selecting actions NSEW
or * respectively, and action choice flows from top to bottom. For instance, the
probability of choosing action S at state 2-(1,3) is the sum of the products of the
probabilities of choosing actions NSEW and * at state 1-(1,2) and the probabilities,
conditional on this higher level selection, of choosing action S at state 2-0,3). Apart
from the right hand side of the barrier, the actions are generally correct - however
there are examples of sub-optimal behaviour caused by the decomposition of the
space, eg the system decides to move North at 3-(8,5) despite it being more felicitous
to move South.

Closer investigation of the course of learning revea Is that, as might be expected from
the restrictions in updating the Q values, the system initially learns in a completely
bottom-up manner. However after a while, it learns appropriate actions at the
highest levels, and so top-down learning happens too. This generally beneficial
effect arises because there are far fewer states at coarse resolutions, and so it is
easier for the agent to calculate what to do.

Feudal Reinforcement Learning 277

4 DISCUSSION

The feudal architecture partially addresses one of the major concerns in reinforce­
ment learning about how to divide a single task up into sub-tasks at multiple levels.
A demonstration was given of how this can be done separately from choosing be­
tween different possible sub-managers at a given level.

It depends on there being a plausible managerial system, preferably based on a
natural hierarchical division of the available state space. For some tasks it can be
very inefficient, since it forces each sub-manager to learn how to satisfy all the
sub-tasks set by its manager, whether or not those sub-tasks are appropriate. It
is therefore more likely to be useful in environments in which the set tasks can
change. Managers need not necessarily know in advance the consequences of their
actions. They could learn, in a self-supervised manner, information about the state
transitions that they have experienced. These observed next states can be used as
goals for their sub-managers - consistency in providing rewards for appropriate
transitions is the only requirement.

Although the system gains power through hiding information, which reduces
the size of the state spaces that must be searched, such a step also introduces
inefficiencies. In some cases, if a sub-manager only knew the super-task of its
super-manager then it could bypass its manager with advantage. However the
reductio of this would lead to each sub-manager having as large a state space as
the whole problem, negating the intent of the feudal architecture. A more serious
concern is that the non-Markovian nature of the task at the higher levels (the future
course of the agent is determined by more detailed information than just the high
level states) can render the problem insoluble. Moore and Atkeson's (1993) system
for detecting such cases and choosing finer resolutions accordingly should integrate
well with the feudal system.

For the maze task, the feudal system learns much more about how to navigate than
the standard Q-Iearning system. Whereas the latter is completely concentrated on
a particular target, the former knows how to execute arbitrary high level moves
efficiently, even ones that are not used to find the current goal such as going East
from one quarter of the space 1-(2,2) to another 1-(1,2). This is why exploration
can be more efficient. It doesn't require a map of the space, or even a model of
state x action -4 next state to be learned explicitly.

Jameson (1992) independently studied a system with some similarities to the feu­
dal architecture. In one case, a high level agent learned on the basis of external
reinforcement to provide on a slow timescale direct commands (like reference tra­
jectories) to a low level agent - which learned to obey it based on reinforcement
proportional to the square trajectory error. In another, low and high level agents
received the same reinforcement from the world, but the former was additionally
tasked on making its prediction of future reinforcement significantly dependent
on the output of the latter. Both systems learned very effectively to balance an
upended pole for long periods. They share the notion of hierarchical structure
with the feudal architecture, but the notion of control is somewhat different.

Multi-resolution methods have long been studied as ways of speeding up dynamic
programming (see Morin, 1978, for numerous examples and references). Standard

278 Dayan and Hinton

methods focus effectively on having a single task at every level and just having
coarser and finer representations of the value function. However, here we have
studied a slightly different problem in which managers have the flexibility to specify
different tasks which the sub-managers have to learn how to satisfy. This is more
com plicated, but also more powerful.

From a psychological perspective, we have replaced a system in which there is a
single external reinforcement schedule with a system in which the rat's mind is
composed of a hierarchy of little Skinners.

Acknowledgements

We are most grateful to Andrew Moore, Mark Ring, Jiirgen Schmid huber, Satinder
Singh, Sebastian Thrun and Ron Williams for helpful discussions. This work
was supported by SERC, the Howard Hughes Medical Institute and the Canadian
Institute for Advanced Research (CIAR). GEH is the Noranda fellow of the CIAR.

References

[1] Barto, AC, Bradtke, SJ & Singh, SP (1991). Real-Time Learning and Control using Asyn­
chronous Dynamic Programming. COINS technical report 91-57. Amherst: University of
Massach usetts.

[2] Barto, AC, Sutton, RS & Watkins, qCH (1989). Learning and sequential decision
making. In M Gabriel & J Moore, editors, Learning and Computational Neuroscience:
Foundations of Adaptive Networks. Cambridge, MA: MIT Press, Bradford Books.

[3] Hinton, GE (1987). Connectionist Learning Procedures. Technical Report CMU-CS-B7-115,
Department of Computer Science, Carnegie-Mellon University.

[4] Jacobs, RA, Jordan, MI, Nowlan, S1 & Hinton, GE. Adaptive mixtures of local experts.
Neural Computation, 3, pp 79-87.

[5] Jameson, JW (1992). Reinforcement control with hierarchical backpropagated adaptive
critics. Submitted to Neural Networks.

[6] Moore, AW & Atkeson, CC (1993). Memory-based reinforcement learning: efficient
computation with prioritized sweeping. In SJ Hanson, CL Giles & JD Cowan, editors
Advances in Neural Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann.

[7] Morin, TL (1978). Computational ad vances in dynamic programming. In ML Puterman,
editor, Dynamic Programming and its Applications. New York: Academic Press.

[8] Moore, AW (1991). Variable resolution dynamic programming: Efficiently learning
action maps in multivariate real-valued state spaces. Proceedings of the Eighth Machine
Learning Workshop. San Mateo, CA: Morgan Kaufmann.

[9] Singh, SP (1992a). Transfer of learning by composing solutions for elemental sequential
tasks. Machine Learning, 8, pp 323-340.

[10] Singh, SP (1992b). Scaling reinforcement learning algorithms by learning variable tem­
poral resolution models. Submitted to Machine Learning.

[11] Tesauro, G (1992). Practical issues in temporal difference learning. Machine Learning, 8,
pp 257-278.

[12J Watkins, qCH (1989). Learning from Delayed Rewards. PhD Thesis. University of Cam­
bridge, England .

