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Abstract 

A method for creating a non-linear encoder-decoder for multidimensional data 
with compact representations is presented. The commonly used technique of 
autoassociation is extended to allow non-linear representations, and an objec­
tive function which penalizes activations of individual hidden units is shown 
to result in minimum dimensional encodings with respect to allowable error in 
reconstruction. 

1 INTRODUCTION 

Reducing dimensionality of data with minimal information loss is important for feature 
extraction, compact coding and computational efficiency. The data can be tranformed 
into "good" representations for further processing, constraints among feature variables 
may be identified, and redundancy eliminated. Many algorithms are exponential in the 
dimensionality of the input, thus even reduction by a single dimension may provide valuable 
computational savings. 

Autoassociating feed forward networks with one hidden layer have been shown to extract 
the principal components of the data (Baldi & Hornik, 1988). Such networks have been 
used to extract features and develop compact encodings of the data (Cottrell, Munro & 
Zipser, 1989). Principal Components Analysis projects the data into a linear subspace 
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Figure 1: A network capable of non-linear lower dimensional representations of data. 

with minimum information loss, by multiplying the data by the eigenvectors of the sample 
covariance matrix. By examining the magnitude of the corresponding eigenvalues one can 
estimate the minimum dimensionality of the space into which the data may be projected 
and estimate the loss. However, if the data lie on a non-linear submanifold of the feature 
space, then Principal Components will overestimate the dimensionality. For example, the 
covariance matrix of data sampled from a helix in R3 will have full-rank and thus three 
principal components. However, the helix is a one-dimensional manifold and can be 
(smoothly) parameterized with a single number. 

The addition of hidden layers between the inputs and the representation layer, and between 
the representation layer and the outputs provides a network which is capable of learning 
non-linear representations (Kramer, 1991; Oja, 1991; Usui, Nakauchi & Nakano, 1991). 
Such networks can perform the non-linear analogue to Principal Components Analysis, 
and extract "principal manifolds". Figure 1 shows the basic structure of such a network. 
However, the dimensionality of the representation layer is problematic. Ideally, the dimen­
sionality of the encoding (and hence the number of representation units needed) would be 
determined from the data. 

We propose a pruning method for determining the dimensionality of the representation. A 
greedy algorithm which successively eliminates representation units by penalizing variances 
results in encodings of minimal dimensionality with respect to the allowable reconstruction 
error. The algOrithm therefore performs non-linear dimensionality reduction (NLDR). 
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2 DIMENSIONALITY ESTIMATION BY REGULARIZATION 

The a priori assignment of the number of units for the representation layer is problematic. 
In order to achieve maximum data compression, this number should be as small as possible; 
however, one also wants to preserve the information in the data and thus encode the data with 
minimum error. If the intrinsic dimensionality is not known ahead of time (as is typical), 
some method to estimate the dimensionality is desired. Minimization of the variance of a 
representation unit will essentially squeeze the variance of the data into the other hidden 
units. Repeated minimization results in ip..crf'..asingly lower-dimensional representation. 

More formally, let the dimensionality of the raw data be n. We wish to find F and 

its approximate inverse such that Rn ~ RP ~1 Rn where p < n. Let y denote the ~ 
dimensional vector whose elements are the p univalued functions Ii which make up F. If one 
of the component functions Ii is always constant, itis not contributing to theautoassociation 
and can be eliminated, yielding a function F with p - 1 components. A constant value for 
Ii means that the variance of Ii over the data is zero. We add a regularization term to the 
objective function penalizing the variance of one of the representation units. If the variance 
can be driven to near zero while simultaneously achieving a target error in the primary task 
of autoassociation, then the unit being penalized can be pruned. 

Let Hp = Ap(~f=l (hp(neti ) - E(hp(neti »)2) where neti is the net inputto the unit given 
the jth training pattern, hp (neti ) is the activation of the pth hidden unit in the representation 
layer (the one being penalized) and E is the expectation operator. For notational clarity, 
the superscripts will be suppressed hereafter. E(hi(xi)) can be estimated as hp, the mean 
activation of hp over all patterns in the training data. 

8Hp _ 8Hp 8netp _ 2 \ (h _ h- )h' 
- - Ap P P pOl 8Wp l Bnetp 8Wp l 

where h~ is the derivative of the activation function of unit hp with respect to its input, and 
0' is the output of the lth unit in the preceding layer. Let 8p = 2Ap h~ (hp - hp). We simply 
add Dp to the delta of hp due to backpropagation from the output layer. 

We first train a multi-Iayerl network to learn the identity map. When error is below a user­
specified threshold, Ai is increased for the unit with lowest variance. Ifnetwork weights can 
be found2 such that the variance can be reduced below a small threshold while the remaining 
units are able to encode the data, the hidden unit in question is no longer contributing to the 
autoencoding, and its connections are excised from the network. The process is repeated 
until the variance of the unit in question cannot be reduced while maintaining low error. 

IThere is no reason to suppose that the encoding and decoding layers must be of the same size. 
In fact, it may be that two encoding or decoding layers will provide superior performance. For the 
helix example. the decoder had two hidden layers and linear connections from the representation to 
the output, while the encoder had a single layer. Kramer (1991) uses information theoretic measures 
for choosing the size of the encoding and decoding layers; however, only a fixed representation layer 
and equal encoding and decoding layers are used. 

2Unbounded weights will allow the same amount of information to pass through the layer with 
arbitrarily small variance and using arbitrarily large weights. Therefore the weights in the network 
must be bounded. Weight vectors with magnitudes larger than 10 are renormalized after each epoch. 
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Figure 2: The original 3-D helix data plus reconstructionfrom a single parameter encoding. 

3 RESULTS 

We applied this method to several problems: 

1. a closed I-D manifold in R3. 
2. a I-D helix in R3. 

3. Time series data generated from the Mackey-Glass delay-differential equation. 

4. 160 64 by 64 pixel, 8-bit grayscale face images. 

A number of parameter values must be chosen; error threshold, maximum magnitude of 
weights, value of Ai when increased, and when to "give up" training. For these experiments, 
they were chosen by hand; however, reasonable values can be selected such that the method 
can be automated. 

3.1 Static Mappings: Circle and Helix 

The first problem is interesting because it is known that there is no diffeomorphism from 
the circle to the unit interval. Thus (smooth) single parameter encodings cannot cover the 
entire circle, though the region of the circle left unparameterized can be made arbitrarily 
small. Depending on initial conditions, our technique found one of three different solutions. 
Some simulations resulted in a two-dimensional representation with the encodings lying 
on a circle in R2. This is a failure to reduce the dimensionality. The other solutions were 
both I-D representations; one "wrapping" the unit interval around the circle, the other 
"splitting" the interval into two pieces. The initial architecture consisted of a single 8-unit 
encoding layer and two 8-unit decoding layers. T} was set to 0.01, L\A to 0.1, and the error 
threshold, t:, to 0.001. 

The helix problem is interesting because the data appears to be three-dimensional to PCA. 
NLDR consistentl y finds an invertible one-dimensional representation of the data. Figure 2 
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Figure 3: Data/rom the Mackey-Glass delay-differential equation with T = 17, correlation 
dimension 2.1, and the reconstructed signal encoded in two and three dimensions. 

shows the original data, along with the network»s output when the representation layer was 
stimulated with activation ranging from 0.1 to 0.9. The training data were mapped into the 
interval 0.213 - 0.778 using a single (sigmoidal) representation unit. The initial architecture 
consisted of a single 10-unit encoding layer and two 10-unit decoding layers. 7J was set to 
0.01,~'\ to 0.1, and the error threshold, f, to 0.001. 

3.2 NLDR Applied to Time Series 

The Mackey-Glass problem consists of estimation of the intrinsic dimensionality of a 
scalar signal. Classically» such time series data is embedded in a space of "high enough" 
dimension sllch that one expects the geometric invariants to be preserved. However, this 
may significantly overestimate the number of variables needed to describe the data. 1\vo 
different series were examined; parameter settings for the Mackey-Glass equation were 
chosen such that the intrinsic dimensionality is 2.1 and 3.5. The data was embedded in a 
high dimensional space by the standard technique of recoding as vectors of lagged data. A 
3 dimensional representation was found for the 2.1 dimensional data and a 4 dimensional 
representation was found for the 3.5 dimensional data. Figure 3 shows the original data and 
its reconstruction for the 2.1 dimensional data. Allowing higher reconstruction error resulted 
in a 3 dimensional representation for the 3.5 dimensional data, effectively smoothing the 
original signal (DeMers, 1992). Figure 4 shows the original data and its reconstruction for 
the 3.5 dimensional data. The initial architecture consisted of a two 1 O-unit encoding layers 
and two lO-unit decoding layers, and a 7 -unit representation layer. The representation layer 
was connected directly to the output layer. 7J was set to 0.01» ~,\ to 0.1, and the error 
threshold» E, to 0.001. 

3.3 Faces 

The face image data is much more challenging. The face data are 64 x 64 pixel, 8-bit 
grayscale images taken from (Cottrell & Metcalfe» 1991), each of which can be considered 
to be a point in a 4,096 dimensional "pixel space". The question addressed is whether 
NLDR can find low-dimensional representations of the data which are more useful than 
principal components. The data was preprocessed by reduction to the first 50 principal 
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Figure4: Datafrom the Mackey-Glass delay-differential equation with T = 35, correlation 
dimension 3.5, and the reconstructed signal encoded in four dimensions with two different 
error thresholds. 

components3 of the images. These reduced representations were then processed further 
by NLDR. The architecture consisted of a 30-unit encoding layer and a 30-unit decoding 
layer, and an initial representation layer of 20 units. There were direct connections from the 
representation layer to the output layer. TJ was 0.05, ~,\ was 0.1 and f was 0.001. NLDR 
found a five-dimensional representation. Figure 5 shows four of the 160 images after 
reduction to the first 50 principal components (used as training) and the same images after 
reconstruction from a five dimensional encoding. We are unable to determine whether the 
dimensions are meaningful; however, experiments with the decoder show that points inside 
the convex hull of the representations project to images which look like faces. Figure 6 
shows the reconstructed images from a linear interpolation in "face space" between the two 
encodings which are furthest apart. 

How useful are the representations obtained from a training set for identification and 
classification of other images of the same subjects? The 5-D representations were used 
to train a feedforward network to recognize the identity and gender of the subjects, as in 
(Cottrell & Metcalfe, 1991). 120 images were used in training and the remaining 40 used 
as a test set. The network correctly identified 98% of the training data subjects, and 95% 
on the test set. The network achieved 95% correct gender recognition on both the training 
and test sets. The misclassified subject is shown in Figure 7. An informal poll of visitors 
to the poster in Denver showed that about 2/3 of humans classify the subject as male and 
1/3 as female. 

Although NLDR resulted in five dimensional encodings of the face data, and thus super­
ficially compresses the data to approximately 55 bits per image or 0.013 bits per pixel, 
there is no data compression. Both the decoder portion of the network and the eigenvectors 
used in the initial processing must also be stored. These amortize to about 6 bits per pixel, 
whereas the original images require only 1.1 bits per pixel under run-length encoding. In 
order to achieve data compression, a much larger data set must be obtained in order to find 
the underlying human face manifold. 

350 was chosen by eyeballing a graph of the eigenvalues for the point at which they began to 
"flatten"; any value between about 40 and 80 would be reasonable. 
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Figure 5: Four of the originalface images and their reconstruction after encoding asftve 
dimensional data. 

Figure 6: The two images with 5-D encodings which are the furthest apart. and the 
reconstructions of four 5-D points equally spaced along the line joining them. 

Figure 7: UPat" .. the subject whose gender afeedforward network classified incorrectly. 
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4 CONCLUSIONS 

A method for automatically generating a non-linear encoder/decoder for high dimensional 
data has been presented. The number of representation units in the final network is an 
estimate of the intrinsic dimensionality of the data. The results are sensitive to the choice 
of error bound, though the precise relationship is as yet unknown. The size of the encoding 
and decoding hidden layers must be controlled to avoid over-fitting; any data set can be 
encoded into scalar values given enough resolution. Since we are using gradient search 
to solve a global non-linear optimization problem, there is no guarantee that this method 
will find the global optimum and avoid convergen:;e to local minima. However, NLDR 
consistently constructed low dimensional encoding!; which were decodeable with low loss. 
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