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Abstract 

Neurons in area MT of primate visual cortex encode the velocity 
of moving objects. We present a model of how MT cells aggregate 
responses from VI to form such a velocity representation. Two 
different sets of units, with local receptive fields, receive inputs 
from motion energy filters. One set of units forms estimates of local 
motion, while the second set computes the utility of these estimates. 
Outputs from this second set of units "gate" the outputs from the 
first set through a gain control mechanism. This active process 
for selecting only a subset of local motion responses to integrate 
into more global responses distinguishes our model from previous 
models of velocity estimation. The model yields accurate velocity 
estimates in synthetic images containing multiple moving targets 
of varying size, luminance, and spatial frequency profile and deals 
well with a number of transparency phenomena. 

1 INTRODUCTION 

Humans, and primates in general, are very good at complex motion processing 
tasks such as tracking a moving target against a moving background under varying 
luminance. In order to accomplish such tasks, the visual system must integrate 
many local motion estimates from cells with limited spatial receptive fields and 
marked orientation selectivity. These local motion estimates are sensitive not just 
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to the velocity of a visual target, but also to many other features of the target such 
as its spatial frequency profile or local edge orientation. As a result, the integration 
of these motion signals cannot be performed in a fixed manner, but must be a 
dynamic process dependent on the visual stimulus. 

Although cells with motion-sensitive responses are found in primary visual cortex 
(VI in primates), mounting physiological evidence suggests that the integration of 
these responses to produce responses which are tuned primarily to the velocity of a 
visual target first occurs in primate visual area MT (Albright 1992, Maunsell and 
Newsome 1987). We propose a computational model for integrating local motion 
responses to estimate the velocity of objects in the visual scene. These velocity 
estimates may be used for eye tracking or other visua-motor skills. Previous com­
putational approaches to this problem (Grzywacz and Yuille 1990, Heeger 1987, 
Heeger 1992, Horn and Schunk 1981, Nagel 1987) have primarily focused on how 
to combine local motion responses into local velocity estimates at all points in an 
image (the velocity flow field). We propose that the integration of local motion 
measurements may be much simpler, if one does not try to integrate across all of 
the local motion measurements but only a subset. Our model learns to estimate 
the velocity of visual targets by solving the problems of what to integrate and how 
to integrate in parallel. The trained model yields accurate velocity estimates from 
synthetic images containing multiple moving targets of varying size, luminance, and 
spatial frequency profile. 

2 THE MODEL 

The model is implemented as a cascade of networks of locally connected units 
which has two parallel processing pathways (figure 1). All stages of the model 
are represented as "layers" of units with a roughly retinotopic organization. The 
figure schematically represents the activity in the model at one instant of time. 
Conceptually, it is easier to think of the model as computing evidence for particular 
velocities in an image rather than computing velocity directly. Processing in the 
model may be divided into 3 stages, to be described in more detail below. In the 
first stage, the input intensity image is converted into 36 local motion "images" (9 
of which are shown in the figure) which represent the outputs of 36 motion energy 
filters from each region of the input image. In the second stage, the operations of in­
tegration and selection are performed in parallel. The integration pathway combines 
information from motion energy filters tuned to different directions and spatial and 
temporal frequencies to compute the local evidence in favor of a particular velocity. 
The selection pathway weights each region of the image according to the amount of 
evidence for a particular velocity that region contains. In the third stage, the global 
evidence for a visual target moving at a particular velocity V1: (t) is computed as a 
sum over the product of the outputs of the integration and selection pathways: 

V1:(t) = L 11: (x, y, t)S1:(x, y, t) (1) 
Z:,lI 

where 11:(x, y, t) is the local evidence for velocity k computed by the integration 
pathway from region (x, y) at time t, and S1:(x, y, t) is the weight assigned by the 
selection pathway to that region. 
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Figure 1: Diagram of motion processing model. Processing proceeds 
from left to right in the model, but the integration and selection stages 
operate in parallel. Shading within the boxes indicates different levels of 
activity at each stage. The responses shown in the diagram are intended 
to be indicative of the responses at different stages of the model but do 
not represent actual responses from the model. 

2.1 LOCAL MOTION ESTIMATES 

The first stage of processing is based on the motion energy model (Adelson and 
Bergen 1985, Watson 1985). This model relies on the observation that an intensity 
edge moving at a constant velocity produces a line at a particular orientation in 
space-time. This means that an oriented space-time filter will respond most strongly 
to objects moving at a particular velocity.1 A motion energy filter uses the squared 
outputs of a quadrature pair (900 out of phase) of oriented filters to produce a 
phase independent local velocity estimate. The motion energy model was selected 
as a biologically plausible model of motion processing in mammalian VI, based 
primarily on the similarity of responses of simple and complex cells in cat area VI 
to the output of different stages of the motion energy model (Heeger 1992, Grywacz 
and Yuille 1990, Emerson 1987). 

The particular filters used in our model had spatial responses similar to a two­
dimensional Gabor filter, with the physiologically more plausible temporal responses 
suggested by Adelson and Bergen (1985). The motion energy layer was divided into 
a grid of 49 by 49 receptive field locations and at each grid location there were 
filters tuned to four different directions of motion (up, down, left, and right). For 
each direction of motion there were nine different filters representing combinations 
of three spatial and three temporal frequencies. The filter center frequency spac­
ings were 1 octave spatially and 1.5 octaves temporally. The filter parameters and 
spacings were chosen to be physiologically realistic, and were fixed during training 
of the model. In addition, there was a correspondence between the size of the filter 

IThese filters actually respond most strongly to a narrow band of spatial frequencies 
(SF) and temporal frequencies (TF), which represent a range of velocities, v = TF/SF. 
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Figure 2: Diagram of integration and selection processing stages. Dif­
ferent shadings for units in the integration and output pools correspond 
to different directions of motion. Only two of the selection layers are 
shown and the backgrounds of these layers are shaded to match their 
corresponding integration and output units. See text for description of 
architecture. 

receptive fields and the spatial frequency tuning of the filters with lower frequency 
filters having larger spatial extent to their receptive fields. This is also similar to 
what has been found in visual cortex (Maunsell and Newsome, 1987). 

The input intensity image is first filtered with a difference of gaussians filter which 
is a simplification of retinal processing and provides smoothing and contrast en­
hancement. Each motion energy filter is then convolved with the smoothed input 
image producing 36 motion energy responses at each location in the receptive field 
grid which serve as the input to the next stage of processing. 

2.2 INTEGRATION AND SELECTION 

The integration and selection pathways are both implemented as locally connected 
networks with a single layer of weights. The integration pathway can be thought of 
as a layer of units organized into a grid of 8 by 8 receptive field locations (figure 2). 
Units at each receptive field location look at all 36 motion energy measurements 
from each location within a 9 by 9 region of the motion energy receptive field 
grid. Adjacent receptive field locations receive input from overlapping regions of 
the motion energy layer. 

At each receptive field location in the integration layer there is a pool of 33 integra­
tion units (9 units in one of these pools are shown in figure 2). These units represent 
motion in 8 different directions with units representing four different speeds for each 
direction plus a central unit indicating no motion. These units form a log polar rep­
resentation of the local velocity at that receptive field location, since as one moves 
out along any "arm" of the pool of units each unit represents a speed twice as large 
as the preceding unit in that arm. All of the integration pools share a common set 
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of weights, so in the final Lrained model all compute the same function. 

The activity of an integration unit (which lies between 0 and 1) represents the 
amount of local support for the corresponding velocity. Local competition between 
the units in each integration pool enforces the important constraint that each in­
tegration pool can only provide strong support for one velocity. The competition is 
enforced using a softmax non-linearity: If I~ (x, y, t) represents the net input to unit 
k in one of the integration pools, the state of that unit is computed as 

h:(x,y,t) = el~(~,y,t)/Lel;(~IYlt). 
j 

Note that the summation is performed over all units within a single pool, all of 
which share the same (x, y) receptive field location. 

The output of the model is also represented by a pool of 33 units, organized in the 
same way as each pool of integration units. The state of each unit in the output 
pool represents the global evidence within the entire image supporting a particular 
velocity. The state of each of these output units Vk(t) is computed as the weighted 
sum of the state of the corresponding integration unit in all 64 integration receptive 
field locations (equation (1». The weights assigned to each receptive field location 
are computed by the state of the corresponding selection unit (figure 2). Although 
the activity of output units can be treated as evidence for a particular velocity, 
the activity across the entire pool of units forms a distributed representation of 
a continuous range of velocities (i. e. activity split between two adjacent units 
represents a velocity between the optimal velocities of those two units). 

The selection units are also organized into a grid of 8 by 8 receptive field locations 
which are in one to one correspondence with the integration receptive field locations 
(figure 2). However, it is convenient to think of the selection units as being organized 
not as a single layer of units but rather as 33 layers of units, one for each output unit. 
In each layer of selection units, there is one unit for each receptive field location. 
Two of the selection layers are shown in figure 2. The layer with the vertically 
shaded background corresponds to the output unit for upward motion (also shaded 
with vertical stripes) and states of units in this selection layer weight the states of 
upward motion units in each integration pool (again shaded vertically). 

There is global competition among all of the units in each selection layer. Again 
this is implemented using a softmax non-linearity: If Sk(x, y, t) is the net input to 
a selection unit in layer k, the state of that unit is computed as 

Sk(X,y,t) = eS~(~,y,t)/ L eS~(~',y',t). 

~',y' 

Note that unlike the integration case, the summation in this case is performed over 
all receptive field locations. This global competition enforces the second important 
constraint in the model, that the total amount of support for each velocity across the 
entire image cannot exceed one. This constraint, combined with the fact that the 
integration unit outputs can never exceed 1 ensures that the states of the output 
units are constrained to be between 0 and 1 and can be interpreted as the global 
support within the image for each velocity, as stated earlier. 

The combination of global competition in the selection layers and local competition 
within the integration pools means that the only way to produce strong support for 
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a particular output velocity is for the corresponding selection network to focus all 
its support on regions that strongly support that velocity. This allows the selection 
network to learn to estimate how useful information in different regions of an image 
is for predicting velocities within the visual scene. The weights of both the selection 
and integration networks are adapted in parallel as is discussed next. 

2.3 OBJECTIVE FUNCTION AND TRAINING 

The outputs of the integration and selection networks in the final trained model are 
combined as in equation (I), so that the final outputs represent the global support 
for each velocity within the image. During training of the system however, the 
outputs of each pool of integration units are treated as if each were an independent 
estimate of support for a particular velocity. If a training image sequence contains 
an object moving at velocity VA: then the target for the corresponding output unit 
is set to I, otherwise it is set to o. The system is then trained to maximize the 
likelihood of generating the targets: 

log L = L: L: log (L: SA:(z, y, t) exp [-(VA: - IA:(z, y, t))2]) (2) 
t A: z:,y 

To optimize this objective, each integration output IA:(z, y, t) is compared to the 
target VA: directly, and the outputs closest to the target value are assigned the most 
responsibility for that target, and hence receive the largest error signal. At the 
same time, the selection network states are trained to try and estimate from the 
input alone (i. e. the local motion measurements), which integration outputs are 
most accurate. This interpretation of the system during training is identical to the 
interpretation given to the mixture of experts (Nowlan, 1990) and the same training 
procedure was used. Each pool of integration units functions like an expert network, 
and each layer of selection units functions like a gating network. 

There are, however, two important differences between the current system and the 
mixture of experts. First, this system uses multiple gating networks rather than a 
single one, allowing the system to represent more than a single velocity within an 
image. Second, in the mixture of experts, each expert network has an independent 
set of weights and essentially learns to compute a different function (usually different 
functions of the same input). In the current model, each pool of integration units 
shares the same set of weights and is constrained to compute the same function. 
The effect of the training procedure in this system is to bias the computations of 
the integration pools to favor certain types of local image features (for example, the 
integration stage may only make reliable velocity estimates in regions of shear or 
discontinuities in velocity). The selection networks learn to identify which features 
the integration stage is looking for, and to weight image regions most heavily which 
contain these kinds of features. 

3 RESULTS AND DISCUSSION 

The system was trained using 500 image sequences containing 64 frames each. These 
training image sequences were generated by randomly selecting one or two visual 
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targets for each sequence and moving these targets through randomly selected tra­
jectories. The targets were rectangular patches that varied in size, texture, and 
intensity. The motion trajectories all began with the objects stationary and then 
one or both objects rapidly accelerated to constant velocities maintained for the re­
mainder of the trajectory. Targets moved in one of 8 possible directions, at speeds 
ranging between 0 and 2.5 pixels per unit of time. In training sequences containing 
multiple targets, the targets were permitted to overlap (targets were assigned to 
different depth planes at random) and the upper target was treated as opaque in 
some cases and partially transparent in other cases. The system was trained us­
ing a conjugate gradient descent procedure until the response of the system on the 
training sequences deviated by less than 1% on average from the desired response. 

The performance of the trained system was tested using a separate set of 50 test 
image sequences. These sequences contained 10 novel visual targets with random 
trajectories generated in the same manner as the training sequences. The responses 
on this test set remained within 2.5% of the desired response, with the largest errors 
occurring at the highest velocities. Several of these test sequences were designed so 
that targets contained edges oriented obliquely to the direction of motion, demon­
strating the ability of the model to deal with aspects of the aperture problem. In 
addition, only small, transient increases in error were observed when two moving 
objects intersected, whether these objects were opaque or partially transparent. 

A more challenging test of the system was provided by presenting the system with 
"plaid patterns" consisting of two square wave gratings drifting in different direc­
tions (Adelson and Movshon, 1982). Human observers will sometimes see a single 
coherent motion corresponding to the intersection of constraints (IOC) direction of 
the two grating motions, and sometimes see the two grating motions separately, 
as one grating sliding through the other. The percept reported can be altered by 
changing the contrast of the regions where the two gratings intersect relative to the 
contrast of the grating itself (Stoner et ai, 1990). We found that for most grating 
patterns the model reliably reported a single motion in the IOC direction, but by 
manipulating the intensity of the intersection regions it was possible to find regions 
where the model would report the motion of the two gratings separately. Coherent 
grating motion was reported when the model tended to select most strongly image 
regions corresponding to the intersections of the gratings, while two motions were 
reported when the regions between the grating intersections were strongly selected. 

We also explored the response properties of selection and integration units in the 
trained model using drifting sinusoidal gratings. These stimuli were chosen because 
they have been used extensively in exploring the physiological response proper­
ties of visual motion neurons in cortical visual areas (Albright 1992, Maunsell and 
Newsome 1987). Integration units tended to be tuned to a fairly narrow band of 
velocities over a broad range of spatial frequencies, like many MT cells (Maunsell 
and Newsome, 1987). The selection units had quite different response properties. 
They responded primarily to velocity shear (neighboring regions of differing veloc­
ity) and to flicker (temporal frequency) rather than true velocity. Cells with many 
of these properties are also common in MT (Maunsell and Newsome, 1987). A final 
important difference between the integration and selection units is their response to 
whole field motion . Integration units tend to have responses which are somewhat 
enhanced by whole field motion in their preferred direction, while selection unit 
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responses are generally suppressed by whole field motion. This difference is similar 
to the recent observation that area MT contains two classes of cell, one whose re­
sponses are suppressed by whole field motion, while responses of the second class 
are not suppressed (Born and Tootell, 1992). 

Finally, the model that we have proposed is built on the premise of an active 
mechanism for selecting subsets of unit responses to integrate over. While this is a 
common aspect of many accounts of attentional phenomena, we suggest that active 
selection may represent a fundamental aspect of cortical processing that occurs with 
many pre-attentive phenomena, such as motion processing. 
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