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Abstract

Learning curves show how a neural network is improved as the
number of training examples increases and how it is related to
the network complexity. The present paper clarifies asymptotic
properties and their relation of two learning curves, one concerning
the predictive loss or generalization loss and the other the training
loss. The result gives a natural definition of the complexity of a
neural network. Moreover, it provides a new criterion of model
selection.

1 INTRODUCTION

The learning curve shows how well the behavior of a neural network is improved as
the number of training examples increases and how it is related with the complexity
of neural networks. This provides us with a criterion for choosing an adequate
network in relation to the number

of training examples. Some researchers have attacked this problem by using sta-
tistical mechanical methods (see Levin et al. [1990], Seung et al. [1991], etc.)
and some by mformation theory and algorithmic methods (see Baum and Haussler
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[1989], etc.). The present paper elucidates asymptotic properties of the learning
curve from the statistical point of view, giving a new criterion for model selection.

2 STATEMENT OF THE PROBLEM

Let us consider a stochastic neural network, which is parameterized by a set of m
weights § = (61,...,6™) and whose input-output relation is specified by a condi-
tional probability p(y|z,8). In other words, for an input signal is £ € R™", the
probability distribution of output y € R™** is given by p(y|z, 6).

A typical form of the stochastic neural network is as follows: let us consider a
multi-layered network f(z,8) where 6 is a set of m parameters § = (8, -..,6™) and
its components correspond to weights and thresholds of the network. When some
input z is given, the network produce an output

y:f(z:,ﬂ)-{-n(a:), (1)

where 7(z) is noise whose conditional distribution is given by a(n|z). Then the
conditional distribution of the network, which specifies the input-output relation,

Is given by
p(ylz,0) = a(y — f(z,0)|z). (2)

We define a training sample &' = {(z;,y), --,(z;, %)} as a set of ¢ examples
generated from the true conditional distribution ¢(y|z), where z; is generated from
a probability distribution »(z) independently. We should note that both r(z) and
q(y|z) are unknown and we need not assume the faithfulness of the model, that is,
we do not assume that there exists a parameter * which realize the true distribution

q(y|z) such that p(y|z,8%) = q(y|z).

Our purpose is to find an appropriate parameter # which realizes a good approxi-
mation p(y|z,0) to ¢(y|r). For this purpose, we use a loss function

L(0) = D(r;q|p(8)) + S(6) (3)

as a criterion to be minimized, where D(r; ¢|p(0)) represents a general divergence
measure between two conditional probabilities ¢(y|z) and p(y|z, @) in the expecta-
tion form under the true input-output probability

D(r;q|p(0)) = /r'(::)q(ylm)k(r,yﬂ)drdy (4)

and S(f) is a regularization term to fit the smoothness condition of outputs (Moody
[1992]). So the loss function is rewritten as a expectation form

L(0) = f r()a(yle)d(z,y, 0)dedy, d(z,y,0) = k(z,y,0) + S@),  (5)

and d(x,y,0) is called the pommtwise loss function.

A typical case of the divergence D of the multi-layered network f(z,8) with noise
is the squared error

D(r:qlp(0)) = ] r(@)a(yl2)ly — f(z,0)|*dxdy, (6)
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The error function of an ordinary multi-layered network is in this form, and the
conventional Back-Propagation method is derived from this type of loss function.

Another typical case is the Kullback-Leibler divergence
ol
D(r; qlp(0)) = /"IJ‘JIf(ylr)log R (7)
p(ylz,0)
The integration [ r(x)¢(y|z)log¢(y|x)dady is a constant called a conditional en-

tropy, and we usually use the following abbreviated form instead of the previous
divergence:

D(r qlp(6)) = — f r(2)a(yle) log plylz, 8)dzdy. (8)

Next, we define an optimum of the parameter in the sense of the loss function that
we introduced. We denote by #* the optimal parameter that minimizes the loss
function L(#), that is,

L) = mﬂin L(#), (9)

and we regard p(y|z,0") as the best realization of the model.
When a training sample €' is given, we can also define an empirical loss function:

L(0) = D(r; 4|p(9)) + 5(0), (10)

where 7, ¢ are the empirical distributions given by the sample &', that is,
!
: 1
D(riglp(0)) = 3 3 k(zi,9:,0), (i, %) €€". (1)
i=1

In practical case, we consider the empirical loss function and search for the quasi-
optimal parameter € defined by

L(0) = min L(6), ' (12)

because the true distributions r(z) and ¢(y|z) are unknown and we can only use
examples (z;, yi) observed [rom the true distribution r(x)q(y|z). We should note

that the quasi-optimal paraneter 0 is a random variable depending on the sample
&', each element of which is chosen randoinly.

The following lemma guarantecs that we can use the empirical loss function instead
of the actual loss function when the number of examples 1 is large.

Lemma 1 [f the number of ezamples t 1s large enough, it is shown that the quasi-

optimal parameter 0 is normally distributed around the optimal parameter 8™, that
18,

0~ N (o-, }Q-lccg—l) | (13)

where
G = /"(r)f;(yli'JVd(r.y.f?')\'/’d(:t'.y,0“}1'0‘3:(!1‘ (14)
Q = fr{.r)q(yi.v)VVd(.r,y.ﬂ')ffl'dy, (15)

and V denoles the differeniial operator with respect to 6.
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This lemma is proved by using the usual statistical methods.

3 LEARNING PROCEDURE

In many cases, however, it is difficult to obtain the quasi-optimal parameter 6 by
minimizing the equation (10) directly. We therefore often use a stochastic descent

method to get an approximation to the quasi-optimal parameter 6.

Definition 1 (Stochastic Descent Method) In each learning step, an ezample
is re-sampled from the given sample £ randomly, and the following modification is
applied to the parameter 0, at step n,

9::+1 = gn - Evd(mi{u)' yi(n)!gn)n (16)

where € is a positive value called a learning coefficient and (zi(n), Yi(n)) s the re-
sampled ezample at step n.

This is a sequential learning method and the operations of random sampling
from &' in each learning step is called the re-sampling plan. The parameter
0, al step m i1s a randomn variable as a function of the re-sampled sequence
w = {(&i1) Yicny) s (i Yiny) }- However, if the initial value of @ is appropriate
(this assumption prevents being stuck in local minima) and if the learning step n
is large enough, it is shown that the learned parameter 6, is normally distributed
around the quasi-optimal parameter.

Lemma 2 If the learning step n is large enough and the learning coefficient € is
small enough, the parameter 8, is normally distributed asymptotically, that is,

0, ~ N(0,V), (17)
where V satisfies the following relation
G =QV + VQ, (18)
T .
G = T;\_/’d(.t“y,,()]Vd(.L,,y,-,ﬂ) . @= ?;VVd(i,,y,,B).

In the following discussion, we assume that n is large enough and ¢ i1s small enough,
and we denote the learned parameter by

0(=0p). (19)

The distribution of the random variable 0, therefore, can be regarded as the normal
distribution N(0,cV).

4 LEARNING CURVES

It is important to evaluate the difference between two quantities L(8) and L(). The
quantity L(0) is called the predictive loss or the generalization error, which shows



Learning Curves, Model Selection and Complexity of Neural Networks

the average loss of the trained network when a novel example is given. On the other
hand, the quantity L(0) is called the training loss or the training error, which shows
the average loss evaluated by the examples used in training. Since these quantities
depend on the sample &' and the re-sampled sequence w, we take the expectation
E and the variance Var with respect to the sample £ and the re-sampling sequence
w.

First, let us consider the predictive loss which is the average loss of the trained
network when a new example (which does not belong to the sample £') is given.
This averaging operation is replaced by averaging all over the input-output pairs,
because the measure of the sample &' is zero. Then the predictive loss is written as

L(0) = / r(z)q(ylz)d(z,y,0)dzdy. (20)
From the properties of 6 and 8, we can prove the following important relations.

Theorem 1 The predictive loss asymptotically salisfies

BIL(G)] = L(f)")+%tr6‘(2“ +5QV. (21)
Var[L(0)] = ;z-j-._—,c.r(:Q-'(.'Q-‘+%t.rQVQ'.f+i;m-c;'v. (22)

Roughly speaking, there exist two random values ¥; and Y., and the predictive loss
can be written as the following forni:

~ 1
LO) = L%+ zuGQ™" + %trQV
| . 1
+?}'1 D +op(?)+ 0p(€), (23)
where Y, and Y> satisfy
E[Yi]=0,  Var[¥i]= %uGQ”GQ—H
1

E[Y2] = 0, Var[Y,] = EtrQVQV.
Cov[¥1Ys] = uGYv,

E, Var and Cov denote the expectation, the variance and the covariance respectively.

Next, we consider the training loss, i.e., the average loss evaluated by the examples
used in training. Just as we did in the previous theorem, we can get the following
relations.

Theorem 2 The training loss asymplotically satisfy

B0 = L(07) — 0rGQ™" + StQV, (24)
Var[L(0)] = %(/r(J:)q(yLr)d(-r:.y,0"]'-’{11-dy

_ (/ r(a)g(yle)d(z, y, 0" )d-‘?fffl)z) : (29)
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Intuitively speaking like the predictive loss, the training loss can be expanded as

i@ = L(Q*)-—LtrGQ'l-i-%trQV
1

MY

Y3 + op(—= )+Op(£) (26)

7

where Y3 satisfies
E[Y3] = 0,
Val] = [ r(@a(ule)dle,v,0dedy— ( [ r@aule)d(e,v,0")dzdy)

When we look at two curves E[L(6)] and E[L()] as functions of ¢, they are called
learning curves which represent the characteristics of learning. The expectations of
the predictive loss and the training loss look quite similar. They are different in
the sign of the term 1/t. As the learning coefficient ¢ increases, the expectations
E[L(6)] and E[L(6)] increase, but as the number of examples ¢ increases, the average
predictive loss E[L(0)] decreases and the average training loss E[L(8)] conversely
increases. Moreover, their variances are different in the order of t. The coefficients
trGQ~!, trQV, etc. are calculated from the matrices G, Q and V, which reflect
the architecture of the network and the loss criterion to be minimized. We can
consider these matrices as representing the complexity of the network. In earlier

work, Amari and Murata [1991] introduced an effective complexity of the network,
trGQ~"', by analogy to Akaike’s Information Criterion (AIC) (see Akaike [1974]).

5 AN APPLICATION FOR MODEL SELECTION

These results naturally leads us to a model selection criterion, which is like the AIC
criterion of statistical model selection and which is related those proposed by some
researchers (see Murata et al. [1991], Moody [1992]). From the previous relations,
we can easily show the following relation

L(0) = L(0) + %trGQ‘l +c, (27)

where ¢ is a quantity of order 1/v/1 and common to all the networks of the same
architecture. We conipare the abilities of two different networks, which have the
same architecture and are trained by the same sample, but differ in the number of
weights or neurons (see I'ig.1). We can use a quantity, NIC (Network Information
Criterion),

NIC(0) = L(0) + %ué‘é*l, (28)

where

N | s 1 j
G: ?z_:vd[r,,;ﬂﬂ)v(!(x,,ﬁ,ﬁ) = ?ZVV(I{(I,;,Q;',Q); (29)

i=1
for selecting an optimal network model. Note that this quantity NIC is directly
calculable, since all elements of it, L(0). G, Q, are given by summing over the
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sample £'. When we have two models A, and Mj, and the NIC of M, is smaller
than that of Afs, the predictive loss of Af, is expected smaller than that of M,, so
M, can be regarded as a better model in the sense of the loss function.

This criterion cannot be used when we compare two networks of different architec-
tures, for example a multi-layered network and a radial basis expansion network.
This is because the value ¢ of the order 1/v/ term is common only to two networks
in which one is included in the other as a submodel. The criterion is in general
valid only for such a family of networks (see Fig.2).

6 CONCLUSIONS

In this paper, we show that there is nice relation between the expectation of the
predictive loss and that of the training loss. This result naturally leads us to a new
model selection criterion.

We will consider the application of this result as an algorithm for automatically
changing the number of hidden units in the learning as future work.
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origin of the large

variance \

q(ylx)

Figure 1: Geometrical representation of hierarchical models: the solid lines between
q(y|z) and 0; show predictive losses, and the dashed lines between §(y|z) and 6; show
training losses. The large variance of the training loss originated in the discrepancy
of q(ylr) and ¢(y|r). When we estimate the prediction loss from the training loss,
the large variance still remains. But in the case that the model M, includes the
model A7, this variance is common to two models, so we do not have to take care

of it.

model Mo

model M ;

Figure 2: Geometrical representation of non-hierarchical models: the solid lines
between ¢(y|z) and 0; show predictive losses, and the dashed lines between §(y|z)

and 0; show training losses. The discrepancy of ¢(y|z) and ¢(y|z) works differently
on two models A, and M4 in estimating predictive losses.



