
Improving Performance in Neural Networks 
Using a Boosting Algorithm 

Harris Drucker 
AT&T Bell Laboratories 

Holmdel, NJ 07733 

Robert Schapire 
AT&T Bell Laboratories 
Murray Hill, NJ 07974 

Abstract 

Patrice Simard 
AT &T Bell Laboratories 

Holmdel, NJ 07733 

A boosting algorithm converts a learning machine with error rate less 
than 50% to one with an arbitrarily low error rate. However, the 
algorithm discussed here depends on having a large supply of 
independent training samples. We show how to circumvent this 
problem and generate an ensemble of learning machines whose 
performance in optical character recognition problems is dramatically 
improved over that of a single network. We report the effect of 
boosting on four databases (all handwritten) consisting of 12,000 digits 
from segmented ZIP codes from the United State Postal Service 
(USPS) and the following from the National Institute of Standards and 
Testing (NIST): 220,000 digits, 45,000 upper case alphas, and 45,000 
lower case alphas. We use two performance measures: the raw error 
rate (no rejects) and the reject rate required to achieve a 1% error rate 
on the patterns not rejected. Boosting improved performance in some 
cases by a factor of three. 

1 INTRODUCTION 

-

In this article we summarize a study on the effects of a boosting algorithm on the 
performance of an ensemble of neural networks used in optical character recognition 
problems. Full details can be obtained elsewhere (Drucker, Schapire, and Simard, 1993). 
The "boosting by filtering" algorithm is based on Schapire's original work (1990) which 
showed that it is theoretically possible to convert a learning machine with error rate less 
than 50% into an ensemble of learning machines whose error rate is arbitrarily low. The 
work detailed here is the first practical implementation of this boosting algorithm. 

As applied to an ensemble of neural networks using supervised learning, the algorithm 
proceeds as follows: Assume an oracle that generates a large number of independent 

42 



Improving Performance in Neural Networks Using a Boosting Algorithm 43 

training examples. First, generate a set of training examples and train a first network. 
After the first network is trained it may be used in combination with the oracle to produce 
a second training set in the following manner: Flip a fair coin. If the coin is heads, pass 
outputs from the oracle through the first learning machine until the first network 
misclassifies a pattern and add this pattern to a second training set. Otherwise, if the coin 
is tails pass outputs from the oracle through the first learning machine until the first 
network finds a pattern that it classifies correctly and add to the training set. This process 
is repeated until enough patterns have been collected. These patterns, half of which the 
first machine classifies correctly and half incorrectly, constitute the training set for the 
second network. The second network may then be trained. 

The first two networks may then be used to produce a third training set in the following 
manner: Pass the outputs from the oracle through the first two networks. If the networks 
disagree on the classification, add this pattern to the training set. Otherwise, toss out the 
pattern. Continue this until enough patterns are generated to form the third training set. 
This third network is then trained. 

In the final testing phase (of Schapire's original scheme), the test patterns (never 
previously used for training or validation) are passed through the three networks and 
labels assigned using the following voting scheme: If the first two networks agree, that is 
the label. Otherwise, assign the label as classified by the third network. However, we 
have found that if we add together the three sets of outputs from each of the three 
networks to obtain one set of ten outputs (for the digits) or one set of twenty-size outputs 
(for the alphas) we obtain better results. Typically, the error rate is reduced by .5% over 
straight voting. 

The rationale for the better performance using addition is as follows: A voting criterion is 
a hard-decision rule. Each voter in the ensemble has an equal vote whether in fact the 
voter has high confidence (large difference between the two largest outputs in a particular 
network) or low confidence (small difference between the two largest outputs). By 
summing the outputs (a soft-decision rule) we incorporate the confidence of the networks 
into the total output. As will be seen later, this also allows us to build an ensemble with 
only two voters rather than three as called for in the original algorithm. 

Conceptually, this process could be iterated in a recursive manner to produce an ensemble 
of nine networks, twenty-seven networks, etc. However, we have found significant 
improvement in going from one network to only three. The penalty paid is potentially an 
increase by a factor of three in evaluating the performance (we attribute no penalty to the 
increased training time). However it can show how to reduce this to a factor of 1.75 
using sieving procedures. 

2 A DEFORMATION MODEL 

The proof that boosting works depends on the assumption of three independent training 
sets. Without a very large training set, this is not possible unless that error rates are large. 
After training the first network, unless the network has very poor performance, there are 
not enough remaining samples to generate the second training set. For example, suppose 
we had 9000 total examples and used the first 3000 to train the first network and that 
network achieves a 5% error rate. We would like the next training set to consist of 1500 
patterns that the first network classifies incorrectly and 1500 that the first network 



44 Drucker, Schapire, and Simard 

classifies incorrectly. At a 5% error rate, we need approximately 30,000 new images to 
pass through the first network to find 1500 patterns that the first network classifies 
incorrectly. These many patterns are not available. Instead we will generate additional 
patterns by using small deformations around the finite training set based on the 
techniques of Simard (Simard, et al., 1992). 

The image consists of a square pixel array (we use both 16x16 and 20x20). Let the 
intensity of the image at coordinate location (ij) be Fjj(x,y) where the (x,y) denotes that 
F is a differentiable and hence continuous function of x and y. i and j take on the discrete 
values 0,1, ... ,15 for a 16x16 pixel array. 

The change in F at location (ij) due to small x-translation, y-translation, rotation, 
diagonal deformation, axis deformation, scaling and thickness deformation is given by 
the following respective matrix inner products: 

aFjj(x,y) 

ax 
aFjj(x,y) 

ay 

where the k's are small values and x and yare referenced to the center of the image. This 
construction depends on obtaining the two partial derivatives. 

ap.·(x y) 
For example, if all the k' s except k 1 are zero, then M'jj(X,y) = k 1 '~X ' is the amount 

by which Fij(x,y) at coordinate location (ij) changes due to an x-translation of value k 1. 

The diagonal deformation can be conceived of as pulling on two opposite comers of the 
image thereby stretching the image along the 45 degree axis (away from the center) while 
simultaneously shrinking the image towards the center along a - 45 degree axis. If k4 
changes sign, we push towards the center along the 45 degree axis and pull away along 
the - 45 degree axis. Axis deformation can be conceived as pulling (or pushing) away 
from the center along the x-axis while pushing (or pulling) towards the center along the 
y-axis. 

If all the k's except k7 are zero, then M'jj(x,y) = k711 VFjj(x,y) I j2 is the norm squared of 
the gradient of the intensity. It can be shown that this corresponds to varying the 
"thickness" of the image. 

Typically the original image is very coarsely quantized and not differentiable. Smoothing 
of the original image is done by numerically convolving the original image with a 5x5 

_ (x2 + y2) 
square kernel whose elements are values from the Gaussian: exp cr to give us 



Improving Performance in Neural Networks Using a Boosting Algorithm 45 

. a 16x 16 or: 20x20 square matrix of smoothed values. 

A matrix of partial derivatives (with respect to x) for each pixel --Iocation is obtained by 
convolving the original image with a kernel whose elements are the derivatives with 
respect to x of the Gaussian function. ' We can similarly form a matrix of parti~ 
derivatives with respect to y. A new image can then be constructed by adding together 
the smoothed image and a differential matrix whose elements are given by the above 
equation. 

Using the above equation, we may simulate an oracle by cycling through a finite sized 
training set, picking random values (uniformly distributed in some small range) of the 
constants k for each new image. The choice of the range of k is somewhat critical: too 
small and the new image is too close to the old image for the neural network to consider 
it a "new" pattern. Too large and the image is distorted and nonrepresentative of "real" 
data. We will discuss the proper choice of k later. 

3 NETWORK ARCHITECTURES 

We use as the basic learning machine a neural network with extensive use of shared 
weights (LeCun, et. al., 1989, 1990). Typically the number of weights is much less than 
the number of connections. We believe this leads to a better ability to reject images (i.e., 
no decision made) and thereby minimizes the number of rejects needed to obtain a given 
error rate on images not rejected. However, there is conflicting evidence (Martin & 
Pitman, 1991) that given enough training patterns, fully connected networks give similar 
performance to networks using weight sharing. For the digits there is a 16 by 16 input 
surrounded by a six pixel border to give a 28 by 28 input layer. The network has 4645 
neurons, 2578 different weights, and 98442 connections. 

The networks used for the alpha characters use a 20 by 20 input surrounded by a six pixel 
border to give a 32 by 32 input layer. There are larger feature maps and more layers, but 
essentially the same construction as for the digits. 

4 TRAINING ALGORITHM 

The training algorithm is described in general terms: Ideally, the data set should be 
broken up into a training set, a validation set and a test set. The training set and 
validation set are smoothed (no deformations) and the first network trained using a 
quasi-Newton procedure. We alternately train on the training data and test on the 
validation data until the error rate on the validation data reaches a minimum. Typically, 
there is some overtraining in that the error rate on the training data continues to decrease 
after the error rate on the validation set reaches a minimum. 

Once the first network is trained, the second set of training data is generated by cycling 
deformed training data through the first network. After the pseudo-random tossing of a 
fair coin, if the coin is heads, deformed images are passed though the first network until 
the network makes a mistake. If tails, deformed images are passed through the network 
until the network makes a correct labeling. Each deformed image is generated from the 
original image by randomly selecting values of the constants k. It may require multiple 
passes through the training data to generate enough deformed images to form the second 
training set 



46 Drucker, Schapire, and Simard 

Recall that the second training set will consist equally of images that the first network 
misclassifies and images that the the first network classifies correctly. The total size of 
the training set is that of the first training set. Correctly classified images are not hard to 
find if the error rate of the first network is low. However, we only accept these images 
with probability 50%. The choice of the range of the random variables k should be such 
that the deformed images do not look distorted. The choice of the range of the k' s is 
good if the error rate using the first network on the deformed patterns is approximately 
the same as the error rate of the first network on the validation set (NOT the first training 
set). 

A second network is now trained on this new training set in the alternate train/test 
procedure using the original validation set (not deformed) as the test set. Since this 
training data is much more difficult to learn than the first training data, typically the error 
rate on the second training set using the second trained network will be higher 
(sometimes much higher) than the error rates of the first network on either the first 
training set or the validation set. Also, the error rate on the validation set using the 
second network will be higher than that of the first network because the network is trying 
to generalize from difficult training data, 50% of which the first network could not 
recognize. 

The third training set is formed by once again generating deformed images and presenting 
the images to both the first and second networks. If the networks disagree (whether both 
are wrong or just one is), then that image is added to the third training set. The network 
is trained using this new training data and tested on the original validation set. 
Typically, the error rate on the validation set using the third network will be much higher 
than either of the first two networks on the same validation set. 

The three networks are then tested on the third set of data, which is the smoothed test 
data. According to the original algorithm we should observe the outputs of the first two 
networks. If the networks agree, accept that labeling, otherwise use the labeling assigned 
by the third network. However, we are interested in more than a low error rate. We have 
a second criterion, namely the percent of the patterns we have to reject (i.e. no 
classification decision) in order to achieve a 1 % error rate. The rationale for this is that if 
an image recognizer is used to sort ZIP codes (or financial statements) it is much less 
expensive to hand sort some numbers than to accept all and send mail to the wrong 
address or credit the wrong account. From now on we shall call this latter criterion the 
reject rate (without appending each time the statement "for a 1 % error rate on the patterns 
not rejected"). 

For a single neural network, a reject criterion is to compare the two (of the ten or twenty­
six) largest outputs of the network. If the difference is great, there is high confidence that 
the maximum output is the correct classification. Therefore, a critical threshold is set 
such that if the difference is smaller then that threshold, the image is rejected. The 
threshold is set so that the error rate on the patterns not rejected is 1 %. 

5 RESULTS 

The boosting algorithm was first used on a database consisting of segmented ZIP codes 
from the United States Postal Service (USPS) divided into 9709 training examples and 
2007 validation samples. 



Improving Performance in Neural Networks Using a Boosting Algorithm 47 

The samples supplied to us from the USPS were machine segmented from zip codes and 
labeled but not size normalized. The validation set consists of approximately 2% badly 
segmented characters (incomplete segmentations. decapitated fives, etc.) The training set 
was cleaned thus the validation set is significantly more difficult than the training set. 

The data was size normalized to fit inside a 16x16 array. centered, and deslanted. There 
is no third group of data called the "test set" in the sense described previously even 
though the validation error rate has been commonly called the test error rate in prior work 
(LeCun. et. al., 1989, 1990). 

Within the 9709 training digits are some machine printed digits which have been found to 
improve performance on the validation set. This data set has an interesting history having 
been around for three years with an approximate 5% error rate and 10% reject rate using 
our best neural network. There has been a slight improvement using double 
backpropagation (Drucker & LeCun. 1991) bringing down the error rate to 4.7% and the 
reject rate to 8.9% but nothing dramatic. This network. which has a 4.7% error rate was 
retrained on smoothed data by starting from the best set of weights. The second and third 
networks were trained as described previously with the following key numbers: 

The retrained first network has a training error rate of less than 1%, a test error rate of 
4.9% and a test reject rate of 11.5% 

We had to pass 153,000 deformed images (recycling the 9709 training set) through the 
trained first network to obtain another 9709 training images. Of these 9709 images. 
approximately one-half are patterns that the first network misclassifies. This means that 
the first network has a 3.2% error rate on the deformed images, far above the error rate on 
the original training images. 

A second network is trained and gives a 5.8% test error rate. 

To generate the last training set we passed 195,000 patterns (again recycling the 9709) to 
give another set of 9709 training patterns. Therefore, the first two nets disagreed on 5% 
of the deformed patterns. 

The third network is trained and gives a test error rate of 16.9% 

Using the original voting scheme for these three networks, we obtained a 4.0% error rate. 
a significant improvement over the 4.9% using one network. As suggested before. adding 
together the three outputs gives a method of rejecting images with low confidence scores 
(when the two highest outputs are too close). For curiosity, we also determined what 
would happen if we just added together the first two networks: 

Original network: 4.9% test error rate and 11.5% reject rate. 
Two networks added: 3.9% test error rate and 7.9% reject rate. 
Three networks added: 3.6% test error rate and 6.6% reject rate. 

The ensemble of three networks gives a significant improvement, especially in the reject 
rate. 

In April of 1992, the National Institute of Standards and Technology (NIST) provided a 
labeled database of 220.000 digits. 45.000 lower case alphas and 45.000 upper case 



48 Drucker, Schapire, and Simard 

alphas. We divided these into training set, validation set, and test set. All data were 
resampled and size-normalized to fit into a 16x16 or 20x20 pixel array. For the digits, we 
deslanted and smoothed the data before retraining the first 16x16 input neural network 
used for the USPS data. After the second training set was generated and the second 
network trained the results from adding the two networks together were so good (Table 1) 
that we decided not to generate the third training set For the NIST data, the error rates 
reported are those of the test data. 

TABLE 1. Test error rate and reject rate in percent 

DATABASE USPS NIST NIST NIST 
digits digits upper lower 

alphas alpha 

ERROR RATE 5.0 1.4 4.0 9.8 
SINGLE NET 

ERROR RATE 3.6 .8 2.4 8.1 
USING BOOSTING 

REJECT RATE 9.6 1.0 9.2 29. 
SINGLE NET 

REJECT RATE 6.6 * 3.1 21. 
USING BOOSTING 

* Reject rate is not reported if the error rate is below 1 %. 

6 CONCLUSIONS 

In all cases we have been able to boost performance above that of single net. Although 
others have used ensembles to improve performance (Srihari, 1990; Benediktsson and 
Swain, 1992; Xu, et. al., 1992) the technique used here is particularly straightforward 
since the usual multi-classifier system requires a laborious development of each classifier. 
There is also a difference in emphasis. In the usual multi-classifier design, each classifier 
is trained independently and the problem is how to best combine the classifiers. In 
boosting, each network (after the first) has parameters that depend on the prior networks 
and we know how to combine the networks (by voting or adding). 

7 ACKNOWLEDGEMENTS 

We hereby acknowledge the United State Postal Service and the National Institute of 
Standards and Technology in supplying the databases. 



Improving Performance in Neural Networks Using a Boosting Algorithm 49 

References 

J.A. Benediktsson and P.H. Swain, "Consensus Theoretic Classification Methods", IEEE 
trans. on Systems, Man, and Cybernetics, Vol. 22, No.4, July/August 1992, pp. 688-704. 

H. Drucker. R. Schapire, and P. Simard "Boosting Perfonnance in Neural Networks", 
International Journal of Pattern Recognition and Artificial Intelligence, (to be published, 
1993)d 

H. Drucker and Y. LeCun, "Improving Generalization Perfonnance in Character 
Recognition", Proceedings of the 1991 IEEE Workshop on Neural Networks for Signal 
Processing, IEEE Press,pp. 198 - 207. 

Y. LeCun, et. aI., "Backpropagation Applied to Handwritten Zip Code Recognition", 
Neural Computation 1,1989, pp. 541-551 

Y. LeCun, et. aI., Handwritten Digit Recognition with a Back-Propagation Network", In 
D.S. Touretsky (ed), Advances in Neural Information Processing Systems 2, (1990) pp. 
396-404, San Mateo, CA: Morgan Kaufmann Publishers 

G. L. Martin and J. A. Pitman, "Recognizing Handed-Printed Letters and Digits Using 
Backpropagation Learning", Neural Computation, Vol. 3, 1991, pp. 258-267. 

R. Schapire, "The Strength of Weak Learnability", Machine Learning, Vol. 5, #2, 1990, 
pp. 197-227. 

P. Simard. "Tangent Prop - A fonnalism for specifying selected invariances in an 
adaptive network", In J.E. Moody, SJ. Hanson, and R.P. Lippmann (eds.) Advances in 
Neural Information Processing Systems 4, (1992) p. 895-903, San Mateo, CA: Morgan 
Kaufmann Publishers 

Sargur Srihari, "High-Perfonnance Reading Machines", Proceeding of the IEEE, Vol 80, 
No.7, July 1992, pp. 1120-1132. 

C.Y. Suen, et. aI., "Computer Recognition of Unconstrained Handwritten Numerals", 
Proceeding of the IEEE, Vol 80, No.7, July 1992, pp. 1162-1180. 

L. Xu, et. al.. "Methods of Combining Multiple Classifiers", IEEE Trans. on Systems 
Man, and Cybernetics, Vol. 22. No.3, May/June 1992, pp. 418-435. 


