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Abstract 

This study demonstrates a paradigm for modeling speech produc­
tion based on neural networks. Using physiological data from 
speech utterances, a neural network learns the forward dynamics 
relating motor commands to muscles and the ensuing articulator 
behavior that allows articulator trajectories to be generated from 
motor commands constrained by phoneme input strings and global 
performance parameters. From these movement trajectories, a sec­
ond neural network generates PARCOR parameters that are then 
used to synthesize the speech acoustics. 

1 INTRODUCTION 

Our group has attempted to model speech production computationally as a process 
in which linguistic intentions are realized as speech through a causal succession of 
patterned behavior. Our aim is to gain insight into the cognitive and neurophysi­
ological mechanisms governing this complex skilled behavior as well as to provide 
plausible models of speech synthesis and possibly recognition based on the physi­
ology of speech production. It is the use of physiological data (EMG) representing 
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motor commands to muscles that distinguishes our modeling effort from those of 
others who use neural networks for articulation-based synthesis and/or inference 
of the dynamical constraints on speech motor control (Jordan, 1986, Jordan, 1990, 
Bailly, Laboissiere, and Schwalz, 1992, Saltzman, 1986, Bengio, Houde, and Jor­
dan, 1992). This paper reports two areas in which implementation of the speech 
production scheme shown in Figure 1 has progressed. Initially, we concentrated on 
modeling the dynamics underlying articulation so that phoneme strings can spec­
ify motor commands to muscles, which then specify phoneme-specific articulator 
behavior (Hirayama, Vatikiotis-Bateson, Kawato, and Jordan, 1992). A neural net­
work learned the forward dynamics relating motor commands to muscles and the 
ensuing articulator behavior associated with prosodic ally intact, but phonemic ally 
simplified, reiterant speech utterances. Then, a cascade neural network (Kawato, 
Maeda, Uno, and Suzuki, 1990) containing the forward dynamics model along with a 
suitable smoothness criterion (Uno, Kawato, and Suzuki, 1989) was used to produce 
continuous motor commands from a sequence of discrete articulatory targets cor­
responding to the phoneme input string. From this sequence of motor commands, 
appropriate articulator trajectories were then generated. 

Intention to Speak 
Intended Phoneme Global Performance 

Sequence Parameters 

Articulator Movement 

Figure 1: Conceptual scheme of speech production 

Although the results of this early work were encouraging, there were two technical 
limitations obstructing our effort to model real speech. First, using optoelectronic 
transduction techniques, only simple speech samples whose primary articulators 
were the lips and jaw could be recorded, hence the use of reiterant ba. Without dy­
namic tongue data, real speech could not be modeled. Also, the reiterant paradigm 
introduced a degree of rhythmical movement behavior not observed in real speech. 
The second limitation was that activity of only four muscles and generally only one 
dimension of articulator motion could be recorded simultaneously. Thus, agonist­
antagonist muscle activity was not represented even for this limited set of artic­
ulators. Technical improvements in data acquisition and their consequences for 
the subsequent dynamical modeling of real speech are presented in the next two 
sections. The second area of progress has been to implement the transform from 
model- generated articulator trajectories to acoustic output. A neural network is 
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used to acquire the mapping between articulation and acoustics in terms of PAR­
COR parameters (Itakura and Saito, 1969), which are correlated with vocal tract 
area functions. Speech signals are then generated using a PARCOR synthesizer 
from articulator input and appropriate glottal sources (currently, the residual of 
the PARCOR analysis). The results of this modeling for real and reiterant speech 
are reported in the final section of the paper. 

2 EMPIRICAL DEVELOPMENTS 

In order to acquire data more suitable for real speech modeling, two additional 
experiments were run in which articulator position, EMG and acoustic data were 
recorded while the same subject produced real and reiterant speech utterances 5-8 
seconds long at different speaking rates and styles (e.g., casual vs. precise). In 
the first of these, a sophisticated optoelectronic device, OPTOTRAK (Northern 
Digital, Inc.), was used because it permitted simultaneous recording of numerous 
3D articulator positions for the lips, jaw and head, ten EMG channels, the speech 
acoustics, and even dynamic tongue-palate contact patterns. These data were used 
for modeling of the forward dynamics (see Figure 2) and the forward acoustics. 
Real speech utterances collected with this system were heavily loaded with labial 
stops, /p,b,m/, and labiodental fricatives, /f,v /, as well as many low vowels /a, 
ae/. Since surface EMG was used, it was difficult to obtain reliable recordings of 
jaw opening (anterior belly of the digastric), and closing (medial pterygoid) muscles. 
More recently, an electromagnetic position traking system, EMMA (Perkell, Cohen, 
Svirsky, Matthies, Garabieta, and Jackson, 1992), was used to transduce midsagittal 
motions of the tongue tip and tongue blade as well as the lips, jaw, and head. 
Data were collected for the same speech utterances used in the OPTOTRAK and 
original experiments as well as more natural utterances. Reiterant speech was also 
recorded for tao For this experiment, surface and hooked-wire EMG techniques 
were combined, which enabled nine orofacial and extrinsic tongue muscles to be 
recorded for jaw opening and closing, lip opening and closing, and tongue raising 
and lowering. The most important aspects of the signal processing for modeling 
the forward dynamics concern the numerical differentiation of articulator position 
to obtain velocity and acceleration, and the severe low-pass filtering (including 
rectification and integration) of the EMG to from 2000 Hz to 20-40 Hz. Both of 
these introduce spatiotemporal distortions, whose effects on the forward dynamics 
model are currently being examined. 

3 MODELING THE FORWARD DYNAMICS 

The forward dynamics model was obtained using a 3-layer perceptron with back 
propagation (Rumelhart, Hinton, and Williams, 1986). Inputs to the network were 
instantaneous position and velocity for each dimension of articulator motion, and 
the EMG signals of 9-10 related muscles, which serve as the record of motor com­
mands to muscles; outputs were accelerations for each dimension of motion. Figure 2 
shows an example of predicting lip and jaw accelerations from 10 orofacial muscles 
for the 'natural' test utterance, "Pam put the bobbin in the frying pan and added 
more puppy parts to the boiling potato soup." As shown by the generalization re­
sults in Figure 2, the acquired model produced appropriate acceleration trajectories 
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for real speech utterances, suggesting that utterance complexity is not a limiting 
factor in this approach. 

-Network Output ....... ·Experimental Data 

Upper Lip I---"-'~ 

Lower Lip 

Jaw 
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Figure 2: Estimated acceleration over time (5 ms samples) for vertical motion of the three 
articulators is compared to that of the test sentence: "Pam put the bobbin in the frying 
pan and added more puppy parts to the boiling potato soup". 
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Figure 3: The musculo-skeletal forward dynamics model for producing articulator move­
ment trajectories is implemented as a recurrent network. Continuous motor command 
(EMG) input drives the network, which uses estimated acceleration at time tn, to predict 
new velocity (integration) and position (double integration) values at the next time step 
tn+l. D is a one-sample delay unit. The network is initialized with position and velocity 
values taken from the test utterance at to. 

Network training resulted in a one-step look-ahead predictor of the articulator dy­
namics, and was connected recurrently as shown in Figure 3. Using only initial 
values of articulator position and velocity for the first sample and continuous EMG 
input, estimated acceleration is looped back and summed with the velocities and 
positions of the input layer to predict their values for each time step. This is per­
haps an overly stringent test of the acquired model because errors are cumulative 
over the entire utterance 5-8 second utterance. Yet the network outputs appropri­
ate articulator trajectories for the entire utterance. Figure 4 shows the generated 
trajectory for vertical motion of the jaw during reiterant production of ba (recorded 
with the electromagnetometer). While the trajectory generated by the network 
tends to underestimate movement amplitude and introduce a small DC offset, it 
preserves the temporal properties of the test utterance very well everywhere except 
before a phrasal pause. Although good results have been obtained for the analysis 
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Figure 4: Jaw trajectories, generated by the forward dynamics network are compared 
with experimental data. 

of real speech using the larger sets of articulator and muscle inputs, network com­
plexity has greatly increased. Performance of the full network has been poorer than 
before in modeling simple reiterant speech, which suggests some form of modularity 
should be introduced. Also, the addition of tongue data has increased the number 
of apparent many-to-one mappings between muscle activity and articulator motion. 
We are now incorporating as a boundary constraint the midsagittal profile of the 
hard palate and alveolar ridge, against which tongue-tip articulations are made. 

4 MODELING THE FORWARD ACOUSTICS 

Articulator 
Positions 

Glottal Source t----------......;-.:;~.)) ) 
"----------' Acoustic wa;e 

Figure 5: Forward acoustics network. 

The final stage of our speech production model entails using a neural network to 
acquire a model of the relation between articulator motion and the ensuing acous­
tics. As shown in Figure 5, a 3-layer perceptron, using articulator position as input, 
was used to learn PARCOR analysis and generate appropriate 16-order PARCOR 
parameters for subsequent speech synthesis (Itakura and Saito, 1969). We chose 
PARCOR parameters, rather than more commonly used formant values, because 
the parameters have some relation to specific cross-sections of the vocal tract -
e.g., the first PARCOR corresponds to the cross-sectional area closest to the lips 
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Figure 6: PARCOR parameter values (IS-order, 30ms Hanning window at 200Hz) for 
reiterant ba are predicted by the network. Only the first six PARCOR parameters are 
shown. The range of each parameter is -1 to 1 (small tick beside each wave label indicates 
0). The value of kl is about 1 during vowels, and network output generally matches the 
desire wave almost perfectly. 

(Wakita, 1973). Also, PARCOR estimation errors do not have the radical conse­
quences that formant estimation errors show. Finally, there is a unique mapping 
from PARCOR to formant values, but not the reverse (Itakura and Saito, 1969). 
Figure 6 shows the performance of the PARCOR estimation network for the first 
6 parameters out of 16 parameters. Using the learned PARCOR coefficients and 
a sound source, acoustic signals can be synthesized. Currently, we are investigat­
ing various models for controlling sound source as well as prosodic characteristics. 
However, for this preliminary test of the network's ability to learn PARCOR pa­
rameters, the residual signal of PARCOR analysis served as the source waveform. 
Figure 7 shows an example of the network-learned PARCOR synthesis for reiterant 
ba. In this case, the training result is good as can be seen in the waveform (and 
frequency spectrum), or by listening the synthesized sound. However, the results 
have not been as good, so far, for real speech utterances containing a lot of abrupt 
changes and variability in vocal tract shape. One reason for this may be that learn­
ing has not yet converged, because the number articulator input channels is still 
too limited. So far, we have only two markers on tongue, which is not enough to 
recover the full vocal tract shape. This situation, hopefully, will improve as data 
for more tongue positions, or perhaps more functionally motivated placements, are 
collected. Another reason may be the inherent weakness of PARCOR analysis for 
modeling dynamic changes in vocal tract shape. 

5 SUMMARY 

This paper outlines two areas of progress in our effort to develop a computational 
model of speech production. First, we extended our data acquisition to include more 
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Figure 7: Speech acoustics are synthesized by driving network-learned PARCOR param­
eters with a glottal source (the residual). The test sentence is reiterant speech using 00. 
Top and bottom graphs differ only in time scale. 

muscles and dimensions of motion for more articulators, especially the tongue, so 
that we could begin modeling the articulatory dynamics of real speech. As hoped, 
increasing the scope of the data demonstrated the applicability of our network ap­
proach to real speech. However, this also increases the size of the network, which has 
introduced some interesting problems for modeling simple speech samples. We are 
now considering modifications to the network architecture that will enable adap­
tive modeling of speech samples, whose complexity (e.g., number of physiologi­
cal/ articulatory components) may vary. Second, we have employed a simple neural 
network for modeling the articulatory-to-acoustic transform based on PARCOR 
analysis, whose parameters are correlated with vocal tract shape. Although PAR­
COR can be used to synthesize speech, its main use for us is as a tool for assessing 
empirical issues associated with articulatory-acoustic interface. 
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