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Abstract 

Given a set oft raining examples, determining the appropriate num­
ber of free parameters is a challenging problem. Constructive 
learning algorithms attempt to solve this problem automatically by 
adding hidden units, and therefore free parameters, during learn­
ing. We explore an alternative class of algorithms-called meta­
morphosis algorithms-in which the number of units is fixed, but 
the number of free parameters gradually increases during learning. 
The architecture we investigate is composed of RBF units on a lat­
tice, which imposes flexible constraints on the parameters of the 
network. Virtues of this approach include variable subset selec­
tion, robust parameter selection, multiresolution processing, and 
interpolation of sparse training data. 

1 INTRODUCTION 

Generalization performance on a fixed-size training set is closely related to the 
number of free parameters in a network. Selecting either too many or too few 
parameters can lead to poor generalization. Geman et al. (1991) refer to this 
problem as the bias/variance dilemma: introducing too many free parameters incurs 
high variance in the set of possible solutions, and restricting the network to too few 
free parameters incurs high bias in the set of possible solutions. 

Constructive learning algorithms (e.g., Fahlman & Lebiere, 1990; Platt, 1991) have 
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Figure 1: Architecture of an RBF network. 

been proposed as a way of automatically selecting the number of free parameters in 
the network during learning. In these approaches, the learning algorithm gradually 
increases the number of free parameters by adding hidden units to the network. 
The algorithm stops adding hidden units when some validation criterion indicates 
that network performance is good enough. 

We explore an alternative class of algorithms-called metamorphosis algorithms­
for which the number of units is fixed, but heavy initial constraints are placed on 
the unit response properties. During learning, the constraints are gradually relaxed, 
increasing the flexibility of the network. Within this general framework, we devel­
op a learning algorithm that builds the virtues of recursive partitioning strategies 
(Breiman et aI., 1984j Friedman, 1991) into a Radial Basis Function (RBF) net­
work architecture. We argue that this framework offers two primary advantages 
over constructive RBF networks: for problems with low input variable interaction, 
it can find solutions with far fewer free parameters, and it is less susceptible to noise 
in the training data. Other virtues include multiresolution processing and built-in 
interpolation of sparse training data. 

Section 2 introduces notation for RBF networks and reviews the advantages of 
using these networks in constructive learning. Section 3 describes the idea behind 
metamorphosis algorithms and how they can be combined with RBF networks. 
Section 4 describes the advantages of this class of algorithm. The final section 
suggests directions for further research. 

2 RBF NETWORKS 

RBF networks have been used successfully for learning difficult input-output map­
pings such as phoneme recognition (Wettschereck & Dietterich, 1991), digit classi­
fication (Nowlan, 1990), and time series prediction (Moody & Darken, 1989j Platt, 
1991). The basic architecture is shown in Figure 1. The response properties of each 
RBF unit are determined by a set of parameter values, which we'll call a pset. The 
pset for unit i, denoted ri, includes: the center location of the RBF unit in the 
input space, pij the width of the unit, Uij and the strength of the connection(s) 
from the RBF unit to the output unit(s), hi. 
One reason why RBF networks work well with constructive algorithms is because 
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the hidden units have the property of noninterference: the nature of their activation 
functions, typically Gaussian, allows new RBF units to be added without changing 
the global input-output mapping already learned by the network. 

However, the advantages of constructive learning with RBF networks diminish for 
problems with high-dimensional input spaces (Hartman & Keeler, 1991). For these 
problems, a large number of RBF units are needed to cover the input space, even 
when the number of input dimensions relevant for the problem is small. The rele­
vant input dimensions can be different for different parts of the input space, which 
limits the usefulness of a global estimation of input dimension relevance, as in Pog­
gio and Girosi (1990). Metamorphosis algorithms, on the other hand, allow RBF 
networks to solve problems such as these without introducing a large number of free 
parameters. 

3 METAMORPHOSIS ALGORITHMS 

Metamorphosis networks contrast with constructive learning algorithms in that the 
number of units in the network remains fixed, but degrees of freedom are gradually 
added during learning. While metamorphosis networks have not been explored in 
the context of supervised learning, there is at least one instance of a metamorphosis 
network in unsupervised learning: a Kohonen net. Units in a Kohonen net are 
arranged on a lattice; updating the weights of a unit causes weight updates of the 
unit's neighbors. Units nearby on the lattice are thereby forced to have similar 
responses, reducing the effective number of free parameters in the network. In one 
variant of Kohonen net learning, the neighborhood of each unit gradually shrinks, 
increasing the degrees of freedom in the network. 

3.1 MRBF NETWORKS 

We have applied the concept of metamorphosis algorithms to ordinary RBF net­
works in supervised learning, yielding MRBF networks. Units are arranged on an 
n-dimensional lattice, where n is picked ahead of time and is unrelated to the dimen­
sionality of the input space. The response of RBF unit i is constrained by deriving 
its pset, ri, from a collection of underlying psets, each denoted Uj, that also reside 
on the lattice. The elements of Uj correspond to those of ri: Uj = (I-'i, uj, hj). 
Due to the orderly arrangement of the Uj, the lattice is divided into nonoverlap­
ping hyperrectangular regions that are bounded by 2n Uj. Consequently, each ri is 
enclosed by 2n Uj. The pset ri can then be derived by linear interpolation of the 
enclosing underlying psets Uj, as shown in Figure 2 for a one-dimensional lattice. 

Learning in MRBF networks proceeds by minimizing an error function E in the Uj 
components via gradient descent: 

where NEIGHj is the set of RBF units whose values are affected by underlying pset 
i, and k indexes the input units of the network. The update expression is similar 
for uj and hi- To better condition the search space, instead of optimizing the 
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Figure 2: Constrained RBF units . (a) Four RBF units with psets rl-r4 are arranged 
on a one-dimensional lattice, enclosed by underlying psets Ul and U2. (b) An input 
space representation of the constrained RBF units. RBF center locations, widths, 
and heights are linearly interpolated. 

0'[ directly, we follow Nowlan and Hinton's (1991) suggestion of computing each 
RBF unit width according to the transformation O'i = ezp{"Yi!2) and searching for 
the optimum value of "Yi. This forces RBF widths to remain positive and makes it 
difficult for a width to approach zero. 

When a local optimum is reached, either learning is stopped or additional underlying 
psets are placed on the lattice in a process called metamorphosis. 

3.2 METAMORPHOSIS 

Metamorphosis is the process that gradually adds new degrees of freedom to the 
network during learning. For the MRBF network explored in this paper, introduc­
ing new free parameters corresponds to placing additional underlying psets on the 
lattice. The new psets split one hyperrectangular region-an n-dimensional sub­
lattice bounded by 2n underlying psets-into two nonoverlapping hyperrectangular 
regions. To achieve this, 2n - 1 additional underlying psets, which we call the split 
group, are required (Figure 3). The splitting process implements a recursive par­
titioning strategy similar to the strategies employed in the CART (Breiman et aI., 
1984) and MARS (Friedman, 1991) statistical learning algorithms. 

Many possible rules for region splitting exist. In the simulations presented later, 
we consider every possible region and every possible split of the region into two 
subregions. For each split group k, we compute the tension of the split, defined as 

jE'Pl~QUP .11 :! II' 
We then select the split group that has the greatest tension. This heuristic is based 
on the assumption that the error gradient at the point in weight space where a split 
would take place reflects the long-term benefit of that split. 

It may appear that this splitting process is computationally expensive, but it can be 
implemented quite efficiently; the cost of computing all possible splits and choosing 
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Figure 3: Computing the tension of a split group. Arrows are meant to represent 
derivatives of corresponding pset components. 

the best one is linear in the number of RBF units on the lattice. 

4 VIRTUES OF METAMORPHOSIS NETS 

4.1 VARIABLE SUBSET SELECTION 

One advantage ofMRBF networks is that they can perform variable subset selection; 
that is, they can select a subset of input dimensions more relevant to the problem 
and ignore the other input dimensions. This is also a property of other recursive 
partitioning algorithms such as CART and MARS. In MRBF networks, however, 
region splitting occurs on a lattice structure, rather than in the input space. Con­
sequently, the learning algorithm can orient a small number of regions to fit data 
that is not aligned with the lattice to begin with. CART and MARS have to create 
many regions to fit this kind of data (Friedman, 1991). 

To see if this style oflearning algorithm could learn to solve a difficult problem, we 
trained an MRBF network on the Mackey-Glass chaotic time series. Figure 4(a) 
compares normalized RMS error on the test set with Platt's (1991) RAN algorithm 
as the number of parameters increases during learning. Although RAN eventually 
finds a superior solution, the MRBF network requires a much smaller number of 
free parameters to find a reasonably accurate solution. This result agrees with the 
idea that ordinary RBF networks must use many free parameters to cover an input 
space with RBF units, whereas MRBF networks may use far fewer by concentrating 
resources on only the most relevant input dimensions. 

4.2 ROBUST PARAMETER SELECTION 

In RBF networks, the local response of a hidden unit makes it difficult for back 
propagation to move RBF centers far from where they are originally placed. Con­
sequently, the choice of initial RBF center locations is critical for constructive al-
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Figure 4: (a) Comparison on the Mackey-Glass chaotic time series. The curves 
for RAN and MRBF represent an average over ten and three simulation runs, re­
spectively. The simulations used 300 training patterns and 500 test patterns as 
described in (Platt 1991). Simulation parameters for RAN match those report­
ed in (Platt 1991) with € = 0.02. (b) Gaussian noise was added to the function 
y = sin81[':l, 0 < :l < 1, where the task was to predict y given x. The horizontal 
axis represents the standard deviation of the Gaussian distribution. For both al­
gorithms, 20 simulations were run at each noise level. The number of degrees of 
freedom (DOF) needed to achieve a fixed error level was averaged. 

gorithms. Poor choices could result in the allocation of more RBF units than are 
necessary. One apparent weakness of the RAN algorithm is that it chooses RBF 
center locations based on individual examples, which makes it susceptible to noise. 
Metamorphosis in MRBF networks, on the other hand, is based on the more global 
measure of tension. 

Figure 4(b) shows the average number of degrees of freedom allocated by RAN 
and an MRBF network on a simple, one-dimensional function approximation task, 
Gaussian noise was added to the target output values in the training and test sets. 
As the amount of noise increases, the average number of free parameters allocated 
by RAN also increases, whereas for the MRBF network, the average remains low. 

One interesting property of RAN is that allocating many extra RBF units does not 
necessarily hurt generalization performance. This is true when RAN starts with 
wide RBF units and decreases the widths of candidate RBF units slowly. The main 
disadvantage to this approach is wasted computational resources. 

4.3 MULTIRESOLUTION PROCESSING 

Our approach has the property of initially finding solutions sensitive to coarse prob­
lem features and using these solutions to find refinements more sensitive to finer 
features (Figure 5). This idea of multiresolution processing has been studied in the 
context of computer vision relaxation algorithms and is a property of algorithms 
proposed by other authors (e.g. Moody, 1989, Platt, 1991). 
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Figure 5: Example of multiresolution processing. The figure shows performance on a 
two-dimensional classification task, where the goal is to classify all inputs inside the 
U-shape as belonging to the same category. An MRBF network is constrained using 
a one-dimensional lattice. Circles represent RBF widths, and squares represent the 
height of each RBF. 

4.4 INTERPOLATION OF SPARSE TRAINING DATA 

For a problem with sparse training data, it is often necessary to make assumptions 
about the appropriate response at points in the input space far away from the 
training data. Like nearest-neighbor algorithms, MRBF networks have such an 
assumption built in. The constrained RBF units in the network serve to interpolate 
the values of underlying psets (Figure 6). Although ordinary RBF networks can, 
in principle, interpolate between sparse data points, the local response of an RBF 
unit makes it difficult to find this sort of solution by back propagation. 
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Figure 6: Assumptions made for sparse training data on a task with a one­
dimensional input space and one-dimensional output space. Target output values 
are marked with an 'x'. Like nearest-neighbor algorithms, the assumption made by 
MRBF networks causes network response to interpolate between sparse data points. 
This assumption is not built into ordinary RBF networks. 
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5 DIRECTIONS FOR FURTHER RESEARCH 

In our simulations to date, we have not observed astonishingly better generalization 
performance with metamorphosis nets than with alternative approaches, such as 
Platt's RAN algorithm. Nonetheless, we believe the approach worthy of further 
exploration. We've examined but one type of metamorphosis net and in only a few 
domains. The sorts of investigations we are considering next include: substituting 
finite-element basis functions for RBFs, implementing a "soft" version of the RBF 
pset constraint using regularization techniques, and using a supervised learning 
algorithm similar to Kohonen networks, where updating the weights of a unit causes 
weight updates of the unit's neighbors. 
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