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We have designed an architecture to span the gap between bio­
physics and cognitive science to address and explore issues of how 
a discrete symbol processing system can arise from the continuum, 
and how complex dynamics like oscillation and synchronization can 
then be employed in its operation and affect its learning. We show 
how a discrete-time recurrent "Elman" network architecture can 
be constructed from recurrently connected oscillatory associative 
memory modules described by continuous nonlinear ordinary dif­
ferential equations. The modules can learn connection weights be­
tween themselves which will cause the system to evolve under a 
clocked "machine cycle" by a sequence of transitions of attractors 
within the modules, much as a digital computer evolves by transi­
tions of its binary flip-flop attractors. The architecture thus em­
ploys the principle of "computing with attractors" used by macro­
scopic systems for reliable computation in the presence of noise. We 
have specifically constructed a system which functions as a finite 
state automaton that recognizes or generates the infinite set of six 
symbol strings that are defined by a Reber grammar. It is a symbol 
processing system, but with analog input and oscillatory subsym­
bolic representations. The time steps (machine cycles) of the sys­
tem are implemented by rhythmic variation (clocking) of a bifurca­
tion parameter. This holds input and "context" modules clamped 
at their attractors while 'hidden and output modules change state, 
then clamps hidden and output states while context modules are 
released to load those states as the new context for the next cycle of 
input. Superior noise immunity has been demonstrated for systems 
with dynamic attractors over systems with static attractors, and 
synchronization ("binding") between coupled oscillatory attractors 
in different modules has been shown to be important for effecting 
reliable transitions. 
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1 Introduction 

Patterns of 40 to 80 Hz oscillation have been observed in the large scale ac­
tivity (local field potentials) of olfactory cortex [Freeman and Baird, 1987] and 
visual neocortex [Gray and Singer, 1987], and shown to predict the olfactory 
[Freeman and Baird, 1987] and visual pattern recognition responses of a trained 
animal. Similar observations of 40 Hz oscillation in auditory and motor cortex (in 
primates), and in the retina and EMG have been reported. It thus appears that 
cortical computation in general may occur by dynamical interaction of resonant 
modes, as has been thought to be the case in the olfactory system. 

The oscillation can serve a macroscopic clocking function and entrain or "bind" 
the relevant microscopic activity of disparate cortical regions into a well defined 
phase coherent collective state or "gestalt". This can overide irrelevant microscopic 
activity and produce coordinated motor output. There is further evidence that 
although the oscillatory activity appears to be roughly periodic, it is actually chaotic 
when examined in detail. 

If this view is correct, then oscillatory I chaotic network modules form the actual cor­
tical substrate of the diverse sensory, motor, and cognitive operations now studied 
in static networks. It must then be shown how those functions can be accomplished 
with oscillatory and chaotic dynamics, and what advantages are gained thereby. It 
is our expectation that nature makes ~ood use of this dynamical complexity, and 
our intent is to search here for novel deSign principles that may underly the superior 
computational performance of biological systems over man made devices in many 
task domains. These principles may then be applied in artificial systems to engi­
neering problems to advance the art of computation. We have therefore constructed 
a parallel distributed processing architecture that is inspired by the structure and 
dynamics of cerebral cortex, and applied it to the problem of grammatical inference. 

The construction assumes that cortex is a set of coupled oscillatory associative 
memories, and is also guided by the principle that at tractors must be used by 
macroscopic systems for reliable computation in the presence of noise. Present day 
digital computers are built of flip-flops which, at the level of their transistors, are 
continuous dissipative dynamical systems with different attractors underlying the 
symbols we call "0" and "1". 

2 Oscillatory Network Modules 

The network modules of this architecture were developed previously as models of 
olfactory cortex, or caricatures of "patches"of neocortex [Baird, 1990a]. A partic­
ular subnetwork is formed by a set of neural populations whose interconnections 
also contain higher order synapses. These synapses determine at tractors for that 
subnetwork independent of other subnetworks. Each subnetwork module assumes 
only minimal coupling justified by known olfactory anatomy. An N node module 
can be shown to function as an associative memory for up to N 12 oscillatory and 
NI3 chaotic memory attractors [Baird, 1990b, Baird and Eeckman, 1992b). Single 
modules with static, oscillatory, and three types of chaotic attractors - Lorenz, 
Roessler, Ruelle-Takens - have been sucessfully used for recognition of handwritten 
characters [Baird and Eeckman, 1992b]. 

We have shown in these modules a superior stability of oscillatory attractors over 
static attractors in the presence of additive Gaussian noise perturbations with 
the 1 If spectral character of the noise found experimentally by Freeman in the 
brain[Baird and Eeckman, 1992a]. This may be one reason why the brain uses 
dynamic attractors. An oscillatory attractor acts like a a bandpass filter and is 
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effectively immune to the many slower macroscopic bias perturbations in the theta­
alpha-beta range (3 - 25 Hz) below its 40 -80 Hz passband, and the more microscopic 
perturbations of single neuron spikes in the 100 - 1000 Hz range. 

The mathematical foundation for the construction of network modules is contained 
in the normal form projection algorithm[Baird, 1990b]. This is a learning algo­
rithm for recurrent analog neural networks which allows associative memory storage 
of analog patterns, continuous periodic sequences, and chaotic attractors in the same 
network. A key feature of a net constructed by this algorithm is that the underly­
ing dynamics is explicitly isomorphic to any of a class of standard, well understood 
nonlinear dynamical systems - a "normal form" [Guckenheimer and Holmes, 1983]. 
This system is chosen in advance, independent of both the patterns to be stored 
and the learning algorithm to be used. This control over the dynamics permits the 
design of important aspects of the network dynamics independent of the particu­
lar patterns to be stored. Stability, basin geometry, and rates of convergence to 
attractors can be programmed in the standard dynamical system. 

By analyzing the network in the polar form of these "normal form coordinates", 
the amplitude and phase dynamics have a particularly simple interaction. When 
the input to a module is synchronized with its intrinsic oscillation, the amplitudes 
of the periodic activity may be considered separately from the phase rotation, and 
the network of the module may be viewed as a static network with these amplitudes 
as its activity. We can further show analytically that the network modules we have 
constructed have a strong tendency to synchronize as required. 

3 Oscillatory Elman Architecture 

Because we work with this class of mathematically well-understood associative mem­
ory networks, we can take a constructive approach to building a cortical computer 
architecture, using these networks as modules in the same way that digital com­
puters are designed from well behaved continuous analog flip-flop circuits. The 
architecture is such that the larger system is itself a special case of the type of 
network of the submodules, and can be analysed with the same tools used to design 
the subnetwork modules. 

Each module is described in normal form or "mode" coordinates as a k-winner­
take-all network where the winning set of units may have static, periodic or chaotic 
dynamics. By choosing modules to have only two attractors, networks can be built 
which are similar to networks using binary units. There can be fully recurrent con­
nections between modules. The entire super-network of connected modules, how­
ever, is itself a polynomial network that can be projected into standard network 
coordinates. The attractors within the modules may then be distributed patterns 
like those described for the biological model [Baird, 1990a], and observed exper­
imentally in the olfactory system [Freeman and Baird, 1987]. The system is still 
equivalent to the architecture of modules in normal form, however, and may easily 
be designed, simulated, and theoretically evaluated in these coordinates. In this 
paper all networks are discussed in normal form coordinates. 

As a benchmark for the capabilities of the system, and to create a point of contact 
to standard network architectures, we have constructed a discrete-time recurrent 
"Elman" network [Elman, 1991] from oscillatory modules defined by ordinary dif­
ferential equations. We have at present a system which functions as a finite state 
automaton that perfectly recognizes or generates the infinite set of strings defined by 
the Reber grammar described in Cleeremans et. al. [Cleeremans et al., 1989]. The 
connections for this network were found by psuedo-inverting to find the connection 
matrices between a set of pre-chosen automata states for the hidden layer modules 
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and the proper possible output symbols of the Reber grammar, and between the 
proper next hidden state and each legal combination of a new input symbol and the 
present state contained in the context modules. 

We use two types of modules in implementing the Elman network architecture. 
The input and output layer each consist of a single associative memory module 
with six oscillatory at tractors (six competing oscillatory modes), one for each of the 
six possible symbols in the grammar. An attractor in these winner-take-all normal 
form cordinates is one oscillator at its maximum amplitude, with the others near 
zero amplitude. The hidden and context layers consist of binary "units" composed 
of a two competing oscillator module. We think of one mode within the unit as 
representing "I" and the other as representing"O" (see fig. 1). 

A "weight" for this unit is simply defined to be the weight of a driving unit to the 
input of the 1 attractor. The weights for the 0 side of the unit are then given as 
the compliment of these, wO = A - WI. This forces the input to the 0 side of the 
unit be the complement of the input to the 1 side, If = A - If, where A is a bias 
constant chosen to divide input equally between the oscillators at the midpoint of 
activation. 

.---------------------------
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Information flow in the network is controlled by a "machine cycle" implemented 
by the sinusoidal clocking of a bifurcation parameter which controls the level of 
inhibitory inter-mode coupling or "competition" between the individual oscillatory 
modes within each winner-take-all module. 

For illustration, we use a binary module represnting either a single hidden or context 
unit; the behavior of the larger input and output modules is similar. Such a unit is 
defined in polar normal form coordinates by the following equations: 

rli Uirli - crli(rii + (d - bsin(wc/od: t »r5i) + L: wijIj cos(Oj - Oli) 
j 

rOi UirOi - croi(r5i + (d - bsin(wc/ockt»rii) + L:(A - Wij )Ij cos(Oj - OOi) 
j 

Oli Wi + L Wij(Ij !rli) sin(Oj - Oli) 
j 

00i Wi + I)A - Wij )(Ij !rOi) sin(Oj - Ood 
j 
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The clocked parameter bsin(wclockt) has lower (1/10) frequency than the intrinsic 
frequency of the unit Wi. Asuming that all inputs to the unit are phase-locked, 
examination of the phase equations shows that the unit will synchronize with this 
input. When the oscillators are phase-locked to the input, (J; - (Jli = 0, and the 
phase terms cos((J; - (Jli) = cos(O) = 1 dissappear. This leaves the amplitude 
equations rli and rOi with static inputs E; wi;I; and E;(A - wi;)I;. The phase 
equations show a strong tendency to phase-lock, since there is an attractor at zero 
phase difference </> = (Jo - (JI = (Jo - wIt = 0, and a repellor at 180 degrees in the 
phase difference equations ;p for either side of a unit driven by an input of the same 
frequency, WI - Wo = o. 

;p = Wo -WI + (rI/ro)sin(-</», so, ¢ = -sin-1[(ro/rI)(WI - wo)] 

Thus we have a network module which approximates a static network unit in its 
amplitude activity when fully phase-locked. Amplitude information is transmitted 
between modules, with an oscillatory carrier. If the frequencies of attractors in the 
architecture are randomly dispersed by a significant amount, phase-lags appear, 
then synchronization is lost and improper transitions begin to occur. 

For the remainder of the paper we assume the entire system is operating in the syn­
chronized regime and examine the flow of information characterized by the pattern 
of amplitudes of the oscillatory modes within the network. 

4 Machine Cycle by Clocked Bifurcation 

Given this assumption of a phase-locked system, the amplitude dynamics behave as 
a gradient dynamical system for an energy function given by 

where the total input I = E; wii Ii and B = E; Ii. Figures 2a and 2b show the 
energy landscape with no external input for minimal and maximal levels of com­
petition respectively. External input simply adds a linear "tilt" to the landscape, 
with large I giving a larger tilt toward the rli axis and small I a larger tilt toward 
the rOi axis. 

Note that for low levels of competition, there is a broad circular valley. When tilted 
by external input, there is a unique equilibrium that is determined by the bias in 
tilt alon~ one axis over the other. Thinking of rli as the "acitivity" of the unit, 
this acitlvity becomes an increasing function of I. The module behaves as analog 
connectionist unit whose transfer function can be approximated by a sigmoid. 

With high levels of competition, the unit will behave as a binary (bistable) "digital" 
flip-flop element. There are two deep valleys, one on each axis. Hence the final 
steady state of the unit is determined by which basin contains the initial state of the 
system reached during the analog mode of operation before competition is increased 
by the clock. This state changes little under the influence of external input: a 
tilt will move the location of the valleys only slightly. Hence the unit performs 
a winner-take-all choice on the coordinates of its initial state and maintains that 
choice independent of external input. 
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Figure 2b. 

High 
Competition 

We use this bifurcation in the behavior of the modules to control information flow 
within the network. We think of the input and context modules as "sensory", and 
the hidden and output modules as "motor" modules. The action of the clock is 
applied reciprocally to these two sets (grouped by dotted lines in fig.1) so that 
they alternatively open to receive input from each other and make transitions of 
attractors. This enables a network completely defined as a set of ordinary differential 
equations to implement the discrete-time recurrent Elman network. 

At the beginning of a machine cycle, the input and context layers are at high com­
petition and hence their activity is "clamped" at the bottom of deep attractors. 
The hidden and output modules are at low competition and therefore behave as 
traditional feedforward network free to take on analog values. Then the situation 
reverses. As the competition comes up in the output module, it makes a winner­
take-all choice as to the next symbol. Meanwhile high competition has quantized 
and clamped the activity in the hidden layer to a fixed binary vector. Then compe­
tition is lowered in the input and context layers, freeing these modules from their 
attractors. 

Identity mappings from hidden to context and from output to input (gray arrows 
in fig.1) "load" the binarized activity of the hidden layer to the context layer for 
the next cycle, and "place" the generated output symbol into the input layer. For a 
Reber grammar there are always two equally possible next symbols being generated 
in the output layer, and we apply noise to break this symmetry and let the winner­
take-all dynamics of the output module chose one. For the recognition mode of 
operation, these symbols are thought of as "predicted" by the output, and one of 
them must always match the next actual input of a string to be recognized or the 
string is instantly rejected. 

Note that even though the clocking is sinusiodal and these transitions are not sharp, 
the system is robust and reliable. It is only necessary to set the rates of convergence 
within modules to be faster than the rate of change of the clocked bifurcation 
parameter, so that the modules are operating "adiabatically" - i.e. always internally 
relaxed to an equilibrium that is moved slowly by the clocked parameter. 

It is the bifurcation in the phase portrait of a module from one to two attractors 
that contributes the essential "digitization" of the system in time and state. A 
bifurcation is a discontinuous (topologically sharp) change in the phase portrait of 
possibilities for the continuous dynamical behavior of a system that occurs as a 
bifurcation parameter reaches a "critical" value. We can think of the analog mode 
for a module as allowing input to prepare its initial state for the binary "decision" 
between attractor basins that occurs as competition rises and the double potential 
well appears. 

The feedback between sensory and motor modules is effectively cut when one set 
is clamped at high competition. The system can thus be viewed as operating in 
discrete time by alternating transitions between a finite set of attracting states. 
This kind of clocking and "buffering" (clamping) of some states while other states 
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relax is essential to the reliable operation of digital architectures. The clock input 
on a flip-flop clamps it's state until its signal inputs have settled and the choice of 
transition can be made with the proper information available. In our simulations, if 
we clock all modules to transition at once, the programmed sequences lose stability, 
and we get transitions to unprogrammed fixed points and simple limit cycles for 
the whole system. 

5 Training 

When the input and context modules are clamped at their attractors, and the hidden 
and output modules are in the analog operating mode and synchronized to their 
inputs, the network approximates the behavior of a standard feedforward network 
in terms of its amplitude activities. Thus a real valued error can be defined for the 
hidden and output units and standard learning algorithms like back propagation can 
be used to train the connections. 

We can use techniques of Giles et. aI. [Giles et aI., 1992] who have trained simple 
recurrent networks to become finite state automata that can recognize the regular 
Tomita languages and others. If the context units are clamped with high competi­
tion, they are essentially "quantized" to take on only their 0 or 1 attractor values, 
and the feedback connections from the hidden units cannot affect them. While 
Giles, et. aI. often do not quantize their units until the end of training to extract a 
finite state automaton, they find that quantizing of the context units during training 
like this increases learning speed in many cases[Giles et aI., 1992]. In preparation 
for learning in the dynamic architecture, we have sucessfully trained the back pro­
pogation network of Cleermans et. aI. with digititized context units and a shifted 
sigmoid activation function that approximates the one calculated for our oscillatory 
units. 

In the dynamic architecture, we have also the option of leaving the competition 
within the context units at intermediate levels to allow them to take on analog 
values in a variable sized neighborhood of the 0 or 1 attractors. Since our system 
is recurrently connected by an identity map from hidden to context units, it will 
relax to some equilibrium determined by the impact of the context units and the 
clamped input on the hidden unit states, and the effect of the feedback from those 
hidden states on the context states. We can thus further explore the impact on 
learning of this range of operation between discrete time and space automaton and 
continuous analog recurrent network. 

6 Discusion 

The ability to operate as an finite automaton with oscillatory/chaotic "states" is 
an important benchmark for this architecture, but only a subset of its capabilities. 
At low to zero competition, the supra-system reverts to one large continuous dy­
namical system. We expect that this kind of variation of the operational regime, 
especially with chaotic attractors inside the modules, though unreliable for habitual 
behaviors, may nontheless be very useful in other areas such as the search process 
of reinforcement learning. 

An important element of intra-cortical communication in the brain, and between 
modules in this architecture, is the ability of a module to detect and respond to 
the proper input signal from a particular module, when inputs from other modules 
which is irrelevant to the present computation are contributing cross-talk and noise. 
This is smilar to the problem of coding messages in a computer architecture like the 



Synchronization and Grammatical Inference in an Oscillating Elman Net 243 

connection machine so that they can be picked up from the common communica­
tion buss line by the proper receiving module. We believe that sychronization is one 
important aspect of how the brain solves this coding problem. Attractors in mod­
ules of the architecture may be frequency coded during learning so that they will 
sychronize only with the appropriate active attractors in other modules that have 
a similar resonant frequency. The same hardware (or "wetware") and connection 
matrix can thus subserve many different networks of interaction between modules 
at the same time without cross-talk problems. 

This type of computing architecture and its learning algorithms for computation 
with oscillatory spatial modes may be ideal for implementation in optical systems, 
where electromagnetic oscillations, very high dimensional modes, and high process­
ing speeds are available. The mathematical expressions for optical mode competi­
tion are nearly identical to our normal forms. 
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