On Learning p-Perceptron Networks with
Binary Weights

Mostefa Golea Mario Marchand
Ottawa-Carleton Institute for Physics Ottawa-Carleton Institute for Physics
University of Ottawa University of Ottawa
Ottawa, Ont., Canada K1N 6N5 Ottawa, Ont., Canada K1N 6N5
050287@acadvm].uottawa.ca mmmsj@acadvm]l.uottawa.ca

Thomas R. Hancock
Siemens Corporate Research
755 College Road East
Princeton, NJ 08540
hancock@learning.siemens.com

Abstract

Neural networks with binary weights are very important from both
the theoretical and practical points of view. In this paper, we in-
vestigate the learnability of single binary perceptrons and unions of
u-binary-perceptron networks, i.e. an “OR” of binary perceptrons
where each input unit is connected to one and only one percep-
tron. We give a polynomial time algorithm that PAC learns these
networks under the uniform distribution. The algorithm is able
to identify both the network connectivity and the weight values
necessary to represent the target function. These results suggest
that, under reasonable distributions, u-perceptron networks may
be easier to learn than fully connected networks.

1 Introduction

The study of neural networks with binary weights is well motivated from both the
theoretical and practical points of view. Although the number of possible states

591

592

Golea, Marchand, and Hancock

in the weight space of a binary network are finite, the capacity of the network is
not much inferior to that of its continuous counterpart (Barkai and Kanter 1991).
Likewise, the hardware realization of binary networks may prove simpler.

A major obstacle impeding the development of binary networks is that, under an
arbitrary distribution of examples, the problem of learning binary weights is NP-
complete(Pitt and Valiant 1988). However, the question of the learnability of this
class of networks under some reasonable distributions is still open. A first step in
this direction was reported by Venkatesh (1991) for single majority functions.

In this paper we investigate, within the PAC model (Valiant 1984; Blumer et al.
1989), the learnability of two interesting concepts under the uniform distribution:
1) Single binary perceptrons with arbitrary thresholds and 2) Unions of u-binary
perceptrons, i.e. an “OR” of binary perceptrons where each input unit is connected
to one and only one perceptron (fig. 1) 1. These functions are related to so-called
u or read-once formulas (Kearns et al. 1987). Learning these functions on special
distributions is presently a very active research area (Pagallo and Haussler 1989;
Valiant and Warmuth 1991). The u restriction may seem to be a severe one but
it is not. First, under an arbitrary distribution, u-formulas are not easier to learn
than their unrestricted counterpart (Kearns et al. 1987). Second, the u assumption
brings up a problem of its own: determining the network connectivity, which is a
challenging task in itself.

Our main results are polynomial time algorithms that PAC learn single binary
perceptrons and unions of u-binary perceptrons under the uniform distribution of
examples. These results suggest that u-perceptron networks may be somewhat eas-
ier to learn than fully connected networks if one restricts his attention to reasonable
distributions of examples. Because of the limited space, only a sketch of the proofs
is given in this abstract.

2 Definitions

Let I denote the set {0,1}. A perceptron g on I™ is specified by a vector of n real
valued weights w; and a single real valued threshold 8. For x = (z,, z3, ...,z,) € I,
we have:

9(x) { 0 if Yotwz < 0 ()
A perceptron is said to be positive if w; > 0 for i = 1,...,n. We are interested
in the case where the weights are binary valued (+1). We assume, without loss of
generality (w.l.o.g.), that @ is integer.

A function f is said to be a union of perceptrons if it can be written as a disjunction
of perceptrons. If these perceptrons do not share any variables, f is said to be a
union of u-perceptrons (fig. 1), and we write

f=gMvgPv..vg® 1<s<n (2)

We shall assume, w.l.0.g., that f is expressed with the maximum possible number
of g(’s, and has the minimum possible number of non-zero weights.

}The intersection is simply the complement of the union and can be treated similarly.

On Learning p-Perceptron Networks with Binary Weights 593

Output Unit

PLON

L1} OR"

N
Perceptron

(X] [N N] eee

Input Units

Figure 1: A two layer network representing a union of u-perceptrons. Note that
each input unit is connected to one and only one perceptron (hidden unit). The
output unit computes an OR function.

We denote by P(A) the probability of an event A and by P(A) its empirical estimate
based on a given finite sample. All probabilities are taken with respect to the
uniform distribution D on I™. If a € {0,1}, we denote by P(f = 1|z; = a) the
conditional probability that f =1 given the fact that z; = a.

The algorithm will make use of the following probabilistic quantities:

The influence of a variable z;, denoted Inf(xz;), is defined as

Inf(:z:.)=P(f= 1|£L'.= 1) -—P(f= 1|:z. = 0)

Intuitively, the influence of a variable is positive (negative) if its weight is positive
(negative).
The correlation of a variable z; with z;, denoted C(x;,), is defined as

=],I.'L','Ij = 1) —P(f = llxi = 1)

_P(f
C(Zi,-‘b‘j)— P(f=1z;=1)-P(f=1)

where z;z; = 1 stands for z; = z; = 1. This quantity depends largely on whether
or not the two variables are in same perceptron.

In what follows, we adopt the PAC learning model (Valiant 1984; Blumer et al.
1989). Here the methodology is to draw a sample of a certain size labeled according
to the unknown target function f and then to find a “good” approximation h of
f. The error of the hypothesis function h, with respect to the target f, is defined
to be P(h # f) = P(h(x) # f(x)), where x is distributed according to D. An
algorithm learns from examples a target class F using an hypothesis class H under
the distribution D on I™, if for every f € F, and any 0 < ¢,6 < 1, the algorithm
runs in time polynomial in (n, ¢, §) and outputs an hypothesis h € H such that

P[P(h#f) > e¢] < 6

594

Golea, Marchand, and Hancock

3 Learning Networks with Binary Weights

3.1 Learning Single Binary Perceptrons

Let us assume that the target function f is a single binary perceptron g given by
eq. (1). Let us assume also that the distribution generating the examples is uniform
on {0,1}". The learning algorithm proceeds in two steps:

1. Estimating the weight values (signs). This is done by estimating the influ-
ence of each variable. Then the target perceptron is reduced to a positive
perceptron by simply changing z; to 1 — z; whenever w; = —1.

2. Estimating the threshold of the positive target perceptron and hence the
threshold of the original perceptron.

To simplify the analysis, we introduce the following notation. Let N be the number
of negative weights in g and let y be defined as

L x; if w,-=1
y'_{ 1—1'.' if w,-=——1 (3)

Then eq. (1) can be written as
1 i TZTw > 0
= it = 4
9(y) { 0 if E:;x % < Q)
where the renormalized threshold {2 is related to the original threshold @ by: =
6 + N. We assume, w.l.o.g., that 1 < < n. Note that D(x) = D(y).

The following lemma, which follows directly from Bahadur’s expansion (Bahadur
1960), will be used throughout this paper to approximate binomial distributions.

Lemma 1 Let d and n be two integers. Then, if 3 <d <n,

(1) <3(3) s

—_ 1 _nt1
where 2’ = 3243
As we said earlier, intuition suggests that the influence of a variable is positive
(negative) if its weight is positive (negative). The following lemma strengthens this
intuition by showing that there is a measurable gap between the two cases. This
gap will be used to estimate the weight values (signs).

Lemma 2 Let g be a perceptron such that P(g=1), P(g=0) > p, where 0 < p <
1. Then,
> ;% if w; = 1

Inf(zl'){ < —;—_%,— if w; = —1

On Learning p-Perceptron Networks with Binary Weights

Proof sketch for w; = 1: We exploit the equivalence between eq. (1) and eq. (4),
and the fact that the distribution is uniform:

Inf(z;) = P(g(x)=1z; =1) - P(g(x) = 1ljz; = 0)
= P(gly) =1y =1) - P(g9(y) = l|y: = 0)

2 <8:i) P(g=1) (5)
Tra(]

)
n-1
2(”’1)Pw=m 6)
=2 (7)

Applying lemma 1 to either eq. (5) (case: Q > %) or eq.(6) (case: Q < %) yields
the desired result.O

Once we determine the weight values, we reduce g to its positive form by changing
z; to 1 — z; whenever w; = —1. The next step is to estimate the renormalized

threshold Q2 and hence, the original threshold 6.

Lemma 3 Let g be the positive perceptron with a renormalized threshold Q. Let g’
the positive perceptron obtained from g by substituting r for Q. Then, ifr <,

Plg#4¢')<1-P(g=1|¢' =1)

So, if we estimate P(g =1|¢g’ = 1) for r = 1,2, ... and then choose as the renormal-
ized threshold the least r for which P(g = 1]g’ = 1) > (1 — ¢), we are guaranteed
to have P(g # g¢') < e. Obviously, such r exists and is always < () because
P(g=1lg=1)=1forr=Q.

A sketch of the algorithm for learning single binary perceptrons is given in fig. 2.

Theorem 1 The class of binary perceptrons is PAC learnable under the uniform
distribution.

Proof sketch: A sample of size O(%:- In 2) is sufficient to ensure that the different
probabilities are estimated to within a sufficient precision (Hagerup and Rub 1989).
Steps 2 and 3 of the algorithm are obvious. If we reach step 5, P(g =1) > £ and
P(g=0) > 5. Then one has only to set p = § and apply lemma 2 and 3 to step 5
and 6 respectively. Finally, the algorithm runs in time polynomial in n, ¢ and 6.0

3.2 Learning Unions of y-binary Perceptrons

Let us assume now that the target function f is a union of u-binary perceptrons
as in eq. (2). Note that we do not assume that the architecture (connectivity) is
known in advance. Rather, it is the task of the learning algorithm to determine
which variables are in a given perceptron. The learning algorithm proceeds in three
steps:

595

596

Golea, Marchand, and Hancock

Algorithm LEARN-BINARY-PERCEPTRON(n,e 6)

the confidence parameter.
Output: a binary perceptron h.
Description:

1. Cal M = 18—"1#—"’1'-1:1

examples. This sample is be used to estimate the

(Are most examples negative?) If Pg=1)< £ then return A.
Set p= %
(Reduce g to a positive perceptron) For each input variable z;:

ARl

(a) If Inf(z;) > 2n+2, set w; = 1.

(c) Else delete z; (update n accordingly).
6. (Estimating the bias) Let g’ be as defined in lemma 3. Initialize r to 1.
(a) Estimate P(g =1|¢’ =1).
() If Plg=1l¢g’=1)>1- 3¢, set @ =r and go to step 7.
(¢) r=r+1. Go to step 6a.
7. Set § = Q — N. Return A (that is (wy, ..., wn;2)).

Parameters: n is the number of input variables, ¢ is the accuracy parameter and § is

different probablhtles fmtlalize h to the constant perceptron 0. Initialize N to 0.
(Are most examples positive?) If Ple=1)2>(01- %) then set h = 1. Return h.

(b) Else if Inf(z,) < —5;‘;—2, set N=N + 1, w; = —1, and change z; to 1 — z;.

Figure 2: An algorithm for learning single binary perceptrons.

1. Estimating the weight values (signs). This is again done by estimating the
influence of each variable. Then the target function is reduced to a union
of positive perceptrons by simply changing z; to 1 — z; whenever w; = —1.

2. Estimating which variables belong to the same perceptron. This is done by
estimating correlations between different variables.

3. Estimating the renormalized threshold of the each positive target percep-
tron and hence, the threshold of the original perceptron.

The following lemma is a straightforward generalization of lemma 2.

Lemma 4 Let f be a union of u-perceptrons as in (2). Let g(®) be a perceptron in
f and let z; € g(®. Assume that P(f =1) <1 —+ and P(g =1),P(¢g=0) > p
where 0 <7, p< 1. Then

if w; = 1

> iz
Inf(zi) _;'ZEE if wi=-1

Proof sketch for w; = 1: Let m be the disjunction of all perceptrons in f except
g- Then, using the inclusion-exclusion property and the fact that perceptrons in f
do not share any variables,

Inf(zi) = (1-P(m=1))P(g=1lz;=1)-(P(g =1z =0))

On Learning p-Perceptron Networks with Binary Weights

> Y(Pg=1ls=1)-(Plo=1lz=0) > 25 (™

Inequality (7) follows from the fact that 1 — P(m =1) > 1 - P(f =1) > v and
from lemma 2.0

Lemma 4 enables us to determine the weight values and reduce f to its positive
form. Note that we can assume, w.l.o.g., that v > ¢/2 and p > ¢/2n. The next
step is to determine which variables belong to the same perceptron. Starting with
a variable, say z;, the procedure uses the correlation measure to decide whether or
not another variable, say z;, belongs to z;’s perceptron. We appeal to the following
lemma where we assume that f is already reduced to its positive form.

Lemma 5 Let f be a union of u-perceptrons (positive form). Let g(*) be a percep-
tron in f. Let z; € ' and let z; and i be two other influential variables in f.
Then

0 if zj€g® and zi € g®
Clzi,zj) —Clzi,ze) =4 0 if z; ¢ ¢ and z ¢ g
> ;17 if zje€ g(“) and z, ¢ g(a)

The lengthy proof of this important lemma will appear in the full paper.

If we estimate the correlations to within a sufficient precision, the correlation gap,
established in lemma 5, enables us to decide which variables are in the same per-
ceptron.

The last step is to estimate the bias of each perceptron. Let g be a perceptron in f
and let ¢’ be the perceptron obtained from g by setting its renormalized bias to r.
Estimating g’s bias may be done by simply estimating P(f = 1|¢g’ = 1) for different
values of the renormalized threshold, r = 2,3, ..., and choosing the least r such that
P(f=1|¢g' =1) > (1 —¢/n) (sce lemma 3 and step 6 in figure 2).

Theorem 2 The class of u-binary perceptron unions are PAC learnable under the
uniform distribution.

4 Conclusion and Open Problems

We presented a simple algorithm for PAC learning single binary perceptrons and
p-binary-perceptron unions, under the uniform distribution of examples. The hard-
ness results reported in the literature (see (Lin and Vitter 1991)) suggest that one
can not avoid the training difficulties simply by considering only very simple neural
networks. Our results (see also (Marchand and Golea 1992)) suggest that the com-
bination of simple networks and reasonable distributions may be needed to achieve
any degree of success.

The results reported here are part of an ongoing research aimed at understanding
nonoverlapping perceptron networks (Hancock et al. 1991). The extension of these
results to more complicated networks will appear in the full paper.

597

598

Golea, Marchand, and Hancock

Acknowledgements

M. Golea and M. Marchand are supported by NSERC grant OGP0122405. This
research was conducted while T. Hancock was a graduate student at Harvard Uni-
versity, supported by ONR grant N00014-85-K-0445 and NSF grant NSF-CCR-89-
02500.

References

(1] Bahadur R. (1960) “Some Approximations to the Binomial Distribution Func-
tion”, Annals Math. Stat., Vol.31, 43-54.

[2] Barkai E. & Kanter 1. (1991) “Storage Capacity of a Multilayer Neural Network
with Binary weights”, Europhys. Lett., Vol. 14, 107-112.

[3] Blumer A., Ehrenfeucht A., Haussler D., and Warmuth K. (1989) “Learnability
and the Vapnik-Chervonenkis Dimension”, J. ACM, Vol. 36, 929-965.

[4] Hagerup T. & Rub C. (1989) “A Guided Tour to Chernoff Bounds”, Info. Proc.
Lett., Vol. 33, 305-308.

[5] Hancock T., Golea M., and Marchand M. (1991) “Learning Nonoverlapping
Perceptron Networks From Examples and Membership Queries”, TR-26-91, Center
for Research in Computing Technology, Harvard University. Submitted to Machine
Learning.

[6] Kearns M., Li M., Pitt L., and Valiant L. (1987) “On the Learnability of Boolean
Formulas”, in Proc. of the 19th Annual ACM Symposium on Theory of Computing,
285-295, New York, NY.

[7) Lin J.H. & Vitter J.S. (1991) “Complexity Results on Learning by Neural Nets”,
Machine Learning, Vol. 6, 211-230.

(8] Marchand M. & Golea M. (1992) “On Learning Simple Neural Concepts”, to
appear in Network.

[9] Pagallo G. & Haussler D. (1989) “A Greedy Method for learning uDNF functions
under the Uniform Distribution”. Technical Report UCSC-CRI.-89-12, Santa Cruz:
Dept. of Computer and Information Science, University of California at Santa Cruz.

[10] Pitt L. & Valiant L.G. (1988) “Computational Limitations on Learning from
Examples”, J. ACM, Vol. 35, 965-984.

[11] Valiant L.G. (1984) “A Theory of the Learnable”, Comm. ACM, Vol. 27,
1134-1142.

[12] Valiant L.G. & Warmuth K. (Editors) (1991) Proc. of the 4st Workshop on
Computational Learning Theory, Morgan Kaufman.

[13] Venkatesh S. (1991) “On Learning Binary Weights for Majority Functions”, in
Proc. of the 4th Workshop on Computational Learning Theory, 257-266, Morgan
Kaufman.

