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Abstract 

Vector Quantization is useful for data compression. Competitive Learn­
ing which minimizes reconstruction error is an appropriate algorithm for 
vector quantization of unlabelled data. Vector quantization of labelled 
data for classification has a different objective, to minimize the number 
of misclassifications, and a different algorithm is appropriate. We show 
that a variant of Kohonen's LVQ2.1 algorithm can be seen as a multi­
class extension of an algorithm which in a restricted 2 class case can 
be proven to converge to the Bayes optimal classification boundary. We 
compare the performance of the LVQ2.1 algorithm to that of a modified 
version having a decreasing window and normalized step size, on a ten 
class vowel classification problem. 

1 Introduction 

Vector quantization is a form of data compression that represents data vectors by a smaller 
set of codebook vectors. Each data vector is then represented by its nearest codebook 
vector. The goal of vector quantization is to represent the data with the fewest code book 
vectors while losing as little information as possible. 

Vector quantization of unlabelled data seeks to minimize the reconstruction error. This can 
be accomplished with Competitive learning[Grossberg, 1976; Kohonen, 1982], an iterative 
learning algorithm for vector quantization that has been shown to perform gradient descent 
on the following energy function [Kohonen, 1991] 

J /Ix - ws·(x) /l2p(x)dx. 
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where p(x) is the probability distribution of the input patterns and Ws are the reference or 
codebook vectors and s*(x) is defined by IIx - WSO(x) I I ~ /Ix - will (for alIt). This mini­
mizes the square reconstruction error of unlabelled data and may work reasonably well for 
classification tasks if the patterns in the different classes are segregated. 

In many classification tasks, however, the different member patterns may not be segregated 
into separate clusters for each class. In these cases it is more important that members ofthe 
same class be represented by the same codebook vector than that the reconstruction error 
is minimized. To do this, the quantizer can m&ke use of the labelled data to encourage 
appropriate quantization. 

2 Previous approaches to Supervised Vector Quantization 

The first use of labelled data (or a teaching signal) with Competitive Learning by Rumelhart 
and Zipser [Rumelhart and Zipser, 1986] can be thought of as assigning a class to each 
codebook vector and only allowing patterns from the appropriate class to influence each 
reference vector. 

This simple approach is far from optimal though as it fails to take into account interactions 
between the classes. Kohonen addressed this in his LVQ( 1) algorithm[Kohonen, 1986]. He 
argues that the reference vectors resulting from LVQ( 1) tend to approximate for a particular 
class r, 

P(xICr)P(Cr) - ~#rP(xICs)P(Cs). 

where P( Cj) is the a priori probability of Class i and P(xICj) is the conditional density of 
Class i. 

This approach is also not optimal for classification, as it addresses optimal places to put 
the codebook vectors instead of optimal placement of the borders of the vector quantizer 
which arise from the Voronoi tessellation induced by the codebook vectors. 1 

3 Minimizing Misclassifications 

In classification tasks the goal is to minimize the numbers of misclassifications of the 
resultant quantizer. That is we want to minimize: 

(1) 

where, P(Classj) is the a priori probability of Classj and P(xIClassj) is the conditional 
density of Classi and D.Rj is the decision region for class j (which in this case is all x such 
that I~ - wkll < I~ - wjll (for all i) and Wk is a codebook vector for class j). 

Consider a One-Dimensional problem of two classes and two codebook vectors wI and w2 
defining a class boundary b = (wI + w2)/2 as shown in Figure 1. In this case Equation 1 
reduces to: 

1 Kohonen [1986] showed this by showing that the use of a "weighted" Voronoi tessellation (where 
the relative distances of the borders from the reference vectors was changed) worked better. However 
no principled way to calculate the relative weights was given and the application to real data used 
the unweighted tessellation. 
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P(CIass i)P(xlClass i) 

w2 b* b wI % 

Figure 1: Codebook vectors Wl and'W2 define a border b. The optimal place for the border 
is at b* where P(Cl)P(xICt} = P(C2)P(xIC2). The extra misclassification errors incurred by 
placing the border at b is shown by the shaded region. 

(2) 

The derivative of Equation 2 with respect to b is 

That is, the minimum number of misclassifications occurs at b* where 

P(ClaSS1)P(b*IClasSl) = P(Class2)P(b*IClass2). 

If f(x) = (Classl)P(xIClassl) - P(Class2)P(xIClass2) was a regression function then we 
could use stochastic approximation [Robbins and Monro, 1951] to estimate b* iteratively 
as 

ben + 1) = ben) + a(n)Z" 

where Z" is a sample of the random variable Z whose expected value is 
P(Classl)P(b(n)IClasst) - P(Class2)P(b(n)IClass2» and 

lim a(n) = 0 
,,-+co 

l:ia(n) = 00 

l:ia2(n) < 00 

However, we do not have immediate access to an appropriate random variable Z but can 
express P( C lassl )P(xIClassl)-P( Class2)P(xIClass2) as the limit of a sequence of regression 
functions using the Parzen Window technique. In the Parzen window technique, probability 
density functions are estimated as the sum of appropriately normalized pulses centered at 
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the observed values. More formally, we can estimate P(xIClassi) as [Sklansky and Wassel, 
1981] 

Il 

All 1~ 
Pi (x) = - L...J'¥II(x-Xj,cll ) 

n . 
)=1 

where Xj is the sample data point at time j, and 'II II(X- z, c(n)) is a Parzen window function 
centred at Z with width parameter c(n) that satisfies the following conditions 

'¥II(X - z, c(n» ~ 0, Vx, Z 

J~ '¥II(X- Z, c(n»dx = 1 

lim - '¥;(x- z, c(n))dx = 0 11-
11-+- n __ 

lim '¥1I(x-z,c(n» = c5(x-z) 
II-+-

We can estimate f(x) = P(Class1)P(xIClasst) - P(Class2)P(xIClass2) as 

A 1 Il 

rex) = - LS(Xj)'¥II(x-Xj,c(n» 
n . 1 

J= 

where S(Xj) is + 1 if Xj is from Class1 and -1 if Xj is from Class2. 

Then 
lim j"(X) = P(Class1)P(xIClass1) - P(Class2)P(xIClass2) 
II-+-

and 

lim E[S(X)'¥ix - X, c(n)] = P(Class1)P(xIClassd - P(Class2)P(xIClass2) 
II-+-

Wassel and Sklansky [1972] have extended the stochastic approximation method of Rob­
bins and Monro [1951] to find the zero of a function that is the limit of a sequence of 
regression functions and show rigourously that for the above case (where the distribution 
of Class1 is to the left of that of Class2 and there is only one crossing point) the stochastic 
approximation procedure 

ben + 1) = ben) + a(n)ZII(xlI , Class(n), ben), c(n» (3) 

using 
Z _ { 2c(n)'¥(XII - ben), c(n» for XII E Classl 

II - -2c(n)'¥(XII - ben), c(n» for XII E Class2 

converges to the Bayes optimal border with probability one where '¥(x - b, c) is a Parzen 
window function. The following standard conditions for stochastic approximation conver­
gence are needed in their proof 

a(n), c(n) > 0, lim c(n) = 0 lim a(n) = 0, 
II-+- II-+-

1:ia(n)c(n) = 00, 
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as well as a condition that for rectangular Parzen functions reduces to a requirement that 
P( Classl )P(xIClassl) - P( C lass2)P(xlClass2) be strictly positive to the left of b* and strictly 
negative to the right of b* (for full details of the proof and conditions see [Wassel and 
Sklansky, 1972]). 

The above argument has only addressed the motion of the border. But b is defined as 
b = (wI + w2)/2, thus we can move the codebook vectors according to 

dE/dwl = dEldw2 = .5dEldb. 

We could now write Equation 3 as 

(X" - wj(n - 1» 
wj(n + 1) = wj(n) + a2(n) IX" _ wj(n _ 1)1 

if X" lies in window of width 2c(n) centred at ben), otherwise 

Wi(n + 1) = wi(n). 

where we have used rectangular Parzen window functions and X" is from Classj. This 
holds if Classl is to the right or left of Class2 as long as Wl and W2 are relatively ordered 
appropriatel y. 

Expanding the problem to more dimensions, and more classes with more codebook vec­
tors per class, complicates the analysis as a change in two codebook vectors to better adjust 
their border affects more than just the border between the two codebook vectors. How­
ever ignoring these effects for a first order approximation suggests the following update 
procedure: 

* * (X" - wren - 1» 
Wi (n) = Wi (n - 1) + a(n) IIX" _ wren _ 1)11 

*. (X" - w;(n - 1» 
Wj (n) = Wj (n - 1) - a(n) IIX" _ wj(n _ 1)11 

where a(n) obeys the constraints above, X" is from Classj, and w;, wj are the two nearest 
codebook vectors, one each from class i and j U * i) and x" lies within c(n) of the border 
between them. (No changes are made if all the above conditions are not true). As above 
this algorithm assumes that the initial positions of the codebook vectors are such that they 
will not have to cross during the algorithm. 

The above algorithm is similar to Kohonen's LVQ2.1 algorithm (which is performed after 
appropriate initialization of the codebook vectors) except for the normalization of the step 
size, the decreasing size of the window width c(n) and constraints on the learning rate a. 
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4 Simulations 

Motivated by the theory above, we decided to modify Kohonen's LVQ2.1 algorithm to 
add normalization of the step size and a decreasing window. In order to allow closer 
comparison with LVQ2.1, all other parts of the algorithm were kept the same. Thus a 
decreased linearly. We used a linear decrease on the window size and defined it as in 
LVQ2.1 for easier parameter matching. For a window size of w all input vectors satisfying 
d;/dj> g:~ where di is the distance to the closest codebook vector and dj is the distance 
to the next closest codebook vector, fall into the window between those two vectors (Note 
however, that updates only occur if the two closest codebook vectors belong to different 
classes). 

The data used is a version of the Peterson and Barney vowel formant data 2. The dataset 
consists of the first and second formants for ten vowels in a/hVdj context from 75 speakers 
(32 males, 28 females, 15 children) who repeated each vowel twice 3. As we were not 
testing generalization , the training set was used as the test set. 
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Figure 2: The effect of different window sizes on the accuracy for different values of initial 
a. 

We ran three sets of experiments varying the number of codebook vectors and the number 
of pattern presentations. For the first set of experiments there were 20 codebook vectors 
and the algorithms ran for 40000 steps. Figure 2 shows the effect of varying the window 
size for different initial learning rates a( 1) in the LVQ2.1 algorithm. The values plotted are 
averaged over three runs (The order of presentation of patterns is different for the different 
runs). The sensitivity of the algorithm to the window size as mentioned in [Kohonen, 1990] 
is evident. In general we found that as the learning rate is increased the peak accuracy is 
improved at the expense of the accuracy for other window widths. After a certain value 

20 btained from Steven Nowlan 
33 speakers were missing one vowel and the raw data was linearly transfonned to have zero mean 

and fall within the range [-3,3] in both components 
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Figure 3: The performance of LVQ2.1 with and without the modifications (normalized step 
size and decreasing window) for 3 different conditions. The legend gives in order [the alg 
type/ the number of codebook vectors/ the number of pattern presentations] 

the accuracy declines for further increases in learning rate. 

Figure 3 shows the improvement achieved with normalization and a linearly decreasing 
window size for three sets of experiments : (20 code book vectors/40000 pattern pre­
sentations), (20 code book vectors/4000 pattern presentations) and (100 code book vec­
tors/40000 pattern presentations). For the decreasing window algorithm, the x-axis repre­
sents the window size in the middle of the run. As above, the values plotted were averaged 
over three runs. The values of a(l) were the same within each algorithm over all three 
conditions. A graph using the best a found for each condition separately is almost identi­
cal. The graph shows that the modifications provide a modest but consistent improvement 
in accuracy across the conditions. 

In summary the preliminary experiments indicate that a decreasing window and normalized 
step size can be worthwhile additions to the LVQ2.1 algorithm and further experiments on 
the generalization properties of the algorithm and with other data sets may be warranted. 
For these tests we used a linear decrease of the window size and learning rate to allow for 
easier comparison with the LVQ2.1 algorithm. Further modifications on the algorithm that 
experiment with different functions (that obey the theoretical constraints) for the learning 
rate and window size decrease may result in even better performance. 

5 Summary 

We have shown that Kohonen's LVQ2.1 algorithm can be considered as a variant on a 
generalization of an algorithm which is optimal for a IDimensional/2 codebook vector 
problem. We added a decreasing window and normalized step size, suggested from the 
one dimensional algorithm. to the LVQ2.1 algorithm and found a small but consistent 
improvement in accuracy. 
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