
Holographic Recurrent Networks

Tony A. Plate
Department of Computer Science

University of Toronto
Toronto, M5S lA4 Canada

Abstract

Holographic Recurrent Networks (HRNs) are recurrent networks
which incorporate associative memory techniques for storing se­
quential structure. HRNs can be easily and quickly trained using
gradient descent techniques to generate sequences of discrete out­
puts and trajectories through continuous spaee. The performance
of HRNs is found to be superior to that of ordinary recurrent net­
works on these sequence generation tasks.

1 INTRODUCTION

The representation and processing of data with complex structure in neural networks
remains a challenge. In a previous paper [Plate, 1991b] I described Holographic Re­
duced Representations (HRRs) which use circular-convolution associative-memory
to embody sequential and recursive structure in fixed-width distributed represen­
tations. This paper introduces Holographic Recurrent Networks (HRNs), which
are recurrent nets that incorporate these techniques for generating sequences of
symbols or trajectories through continuous space. The recurrent component of
these networks uses convolution operations rather than the logistic-of-matrix-vector­
product traditionally used in simple recurrent networks (SRNs) [Elman, 1991,
Cleeremans et a/., 1991].

The goals ofthis work are threefold: (1) to investigate the use of circular-convolution
associative memory techniques in networks trained by gradient descent; (2) to see
whether adapting representations can improve the capacity of HRRs; and (3) to
compare performance of HRNs with SRNs.

34

Holographic Recurrent Networks 35

1.1 RECURRENT NETWORKS & SEQUENTIAL PROCESSING

SRNs have been used successfully to process sequential input and induce finite
state grammars [Elman, 1991, Cleeremans et a/., 1991]. However, training times
were extremely long, even for very simple grammars. This appeared to be due to the
difficulty of findin& a recurrent operation that preserved sufficient context [Maskara
and Noetzel, 1992J. In the work reported in this paper the task is reversed to be
one of generating sequential output. Furthermore, in order to focus on the context
retention aspect, no grammar induction is required.

1.2 CIRCULAR CONVOLUTION

Circular convolution is an associative memory operator. The role of convolution
in holographic memories is analogous to the role of the outer product operation in
matrix style associative memories (e.g., Hopfield nets). Circular convolution can be
viewed as a vector multiplication operator which maps pairs of vectors to a vector
(just as matrix multiplication maps pairs of matrices to a matrix). It is defined as
z = x@y : Zj = I:~:~ YkXj-k, where @ denotes circular eonvolution, x, y, and z
are vectors of dimension n , Xi etc. are their elements, and subscripts are modulo-n
(so that X-2 = X n -2). Circular convolution can be computed in O(nlogn) using
Fast Fourier Transforms (FFTs). Algebraically, convolution behaves like scalar
multiplication: it is commutative, associative, and distributes over addition. The
identity vector for convolution (I) is the "impulse" vector: its zero'th element is 1
and all other elements are zero. Most vectors have an inverse under convolution,
i.e., for most vectors x there exists a unique vector y (=x- 1) such that x@y = I.
For vectors with identically and independently distributed zero mean elements and
an expected Euclidean length of 1 there is a numerically stable and simply derived
approximate inverse. The approximate inverse of x is denoted by x· and is defined
by the relation x; = Xn-j.

Vector pairs can be associated by circular convolution. Multiple associations can
be summed. The result can be decoded by convolving with the exact inverse or
approximate inverse, though the latter generally gives more stable results.

Holographie Reduced Representations [Plate, 1991a, Plate, 1991b] use c.ircular con­
volution for associating elements of a structure in a way that can embody hierar­
chical structure. The key property of circular convolution that makes it useful for
representing hierarchical structure is that the circular convolution of two vectors is
another vector of the same dimension, which can be used in further associations.

Among assoeiative memories, holographic memories have been regarded as inferior
beeause they produee very noisy results and have poor error correcting properties.
However, when used in Holographic Reduced Representations the noisy results can
be cleaned up with conventional error correcting associative memories. This gives
the best of both worlds - the ability to represent sequential and recursive structure
and clean output vectors.

2 TRAJECTORY-ASSOCIATION

A simple method for storing sequences using circular convolution is to associate
elements of the sequence with points along a predetermined trajectory. This is akin

36 Plate

to the memory aid called the method of loci which instructs us to remember a list
of items by associating each term with a distinctive location along a familiar path.

2.1 STORING SEQUENCES BY TRAJECTORY-ASSOCIATION

Elements of the sequence and loci (points) on the trajectory are all represented by
n-dimensional vectors. The loci are derived from a single vector k - they are its
suc,cessive convolutive powers: kO, kl, k 2, etc. The convolutive power is defined in
the obvious way: kO is the identity vector and k i +1 = ki@k.

The vector k must be c,hosen so that it does not blow up or disappear when raised
to high powers, i.e., so that IlkP II = 1 'V p. The dass of vec.tors which satisfy this
constraint is easily identified in the frequency domain (the range of the discrete
Fourier transform). They are the vectors for which the magnitude of the power of
each frequenc.y component is equal to one. This class of vectors is identic,al to the
class for which the approximate inverse is equal to the exact inverse.

Thus, the trajectory-association representation for the sequence "abc" is

Sabc. = a + b@k + c@k2.

2.2 DECODING TRAJECTORY-ASSOCIATED SEQUENCES

Trajectory-associated sequences can be decoded by repeatedly convolving with the
inverse of the vector that generated the encoding loci. The results of dec,oding
summed convolution products are very noisy. Consequently, to decode trajec.tory
associated sequences, we must have all the possible sequenc,e elements stored in an
error c,orrecting associative memory. I call this memory the "clean up" memory.

For example, to retrieve the third element of the sequence Sabc we convolve twice
with k- 1 , which expands to a@k- 2 + b@k- 1 + c. The two terms involving powers
of k are unlikely to be correlated with anything in the clean up memory. The most
similar item in clean up memory will probably be c. The clean up memory should
recognize this and output the dean version of c.

2.3 CAPACITY OF TRAJECTORY-ASSOCIATION

In [Plate, 1991a] the capacity of circular-convolution based assoc.iative memory was
c,alculated. It was assumed that the elements of all vectors (dimension n) were
c,hosen randomly from a gaussian distribution with mean zero and variance lin
(giving an expec.ted Eudidean length of 1.0). Quite high dimensional vec.tors were
required to ensure a low probability of error in decoding. For example, with .512
element vec.tors and 1000 items in the clean up memory, 5 pairs can be stored with
a 1 % chance of an error in deeoding. The scaling is nearly linear in n: with 1024
element vectors 10 pairs can be stored with about a 1% chance of error. This works
out to a information c,apac.ity of about 0.1 bits per element. The elements are real
numbers, but high precision is not required.

These capacity calculations are roughly applicable to the trajectory-association
method. They slightly underestimate its capacity because the restriction that the
encoding loci have unity power in all frequencies results in lower decoding noise.
Nonetheless this figure provides a useful benchmark against which to compare the
capacity of HRNs which adapt vec.tors using gradient descent.

Holographic Recurrent Networks 37

3 TRAJECTORY ASSOCIATION & RECURRENT NETS

HRNs incorporate the trajectory-association scheme in recurrent networks. HRNs
are very similar to SRNs, sueh as those used by [Elman, 1991] and [Cleeremans et
al. , 1991]. However, the task used in this paper is different: the generation of target
sequences at the output units, with inputs that do not vary in time.

In order to understand the relationship between HRNs and SRNs both were tested
on the sequence generation task. Several different unit activation functions were
tried for the SRN: symmetric (tanh) and non-symmetric sigmoid (1/(1 + e- X)) for
the hidden units, and soft max and normalized RBF for the output units. The best
combination was symmetric sigmoid with softmax outputs .

3.1 ARCHITECTURE

The H RN and the SRN used in the experiments described here are shown in Fig­
ure I. In the H RN the key layer y contains the generator for the inverse loci
(corresponding to k- 1 in Section 2). The hidden to output nodes implement the
dean-up memory: the output representation is local and the weights on the links
to an output unit form the vector that represents the symbol corresponding to that
unit . The softmax function serves to give maximum activation to the output unit
whose weights are most similar to the activation at the hidden layer .

The input representation is also loeal, and input activations do not ehange during
the generation of one sequence . Thus the weights from a single input unit determine
the acti vations at the code layer . Nets are reset at the beginning of each seq lIenee.

The HRN computes the following functions . Time superscripts are omitted where
all are the same. See Figure 1 for symbols. The parameter 9 is an adaptable input
gain shared by all output units.

Code units:

Hidden units:

Context units:

Output units:

(first time step)

(subsequent steps)

(total input)

(output)

(h = p@y)

(softmax)

In the SRN the only differenee is in the reeurrence operation, i.e., the computation
of the activations of the hidden units whieh is, where bj is a bias:

hj = tanh(cj + Ek wjkPk + bj).

The objective function of the network is the asymmetric divergence between the
activations of the output units (or) and the targets (tr) summed over eases sand
timesteps t, plus two weight penalty terms (n is the number of hidden units):

(
""" st lor) 0.0001 (""" r """ c) """ (1 """ 0 2) 2 E = - ~ tj og t;; + n ~ Wjk + ~ Wjk + ~ - L.J Wjk
stJ J J k J k J k

The first weight penalty term is a standard weight cost designed to penalize large

38 Plate

Output 0 Output 0

HRN SRN

(;ontext p

Input i

Figure 1: Holographic. Recurrent Network (HRN) and Simple Recurrent Network
(SRN). The backwards curved arrows denote a copy of activations to the next time
step . In the HRN the c.ode layer is active only at the first time step and the c.ontext
layer is active only after the first time step. The hidden, code, context, and key
layers all have the same number of units. Some input units are used only during
training, others only during testing.

weights. The sec.ond weight penalty term was designed to force the Eudidean length
of the weight vector on each output unit to be one. This penalty term helped the
HRN c.onsiderably but did not noticeably improve the performance of the SRN.

The partial derivatives for the activations were c.omputed by the unfolding in time
method [Rumelhart et ai., 1986]. The partial derivatives for the activations of the
context units in the HRN are:

DE DE a-: = L 81 . Yk-j (= 'lpE = 'lh@Y*)
PJ k ~J

When there are a large number of hidden units it is more efficient to compute this
derivative via FFTs as the convolution expression on the right .

On all sequenc.es the net was cycled for as many time steps as required to produc.e
the target sequence. The outputs did not indic.ate when the net had reached the end
of the sequence, however, other experiments have shown that it is a simple matter
to add an output to indic.ate this.

3.2 TRAINING AND GENERATIVE CAPACITY RESULTS

One of the motivations for this work was to find recurrent networks with high
generative capacity, i.e., networks whic.h after training on just a few sequences
c.ould generate many other sequences without further modification of recurrent or
output weights . The only thing in the network that changes to produce a different
sequence is the activation on the codes units . To have high generative capacity the
function of the output weights and recurrent weights (if they exist) must generalize
to the production of novel sequenc.es. At each step the recurrent operation must
update and retain information about the current position in the sequence. It was

Holographic Recurrent Networks 39

expected that this would be a difficult task for SRNs, given the reported difficulties
with getting SRNs to retain context, and Simard and LeCun's [1992] report of being
unable to train a type of recurrent network to generate more than one trajectory
through c.ontinuous space. However, it turned out that HRNs, and to a lesser extent
SRNs, c.ould be easily trained to perform the sequence generation task well.

The generative capacity of HRNs and SRNs was tested using randomly chosen
sequences over :3 symbols (a, b, and c). The training data was (in all but one
case) 12 sequences of length 4, e.g., "abac", and "bacb". Networks were trained
on this data using the conjugate gradient method until all sequences were correctly
generated. A symbol was judged to be correct when the activation of the correct
output unit exceeded 0.5 and exceeded twice any other output unit activation.

After the network had been trained, all the weights and parameters were frozen,
except for the weights on the input to c.ode links. Then the network was trained on
a test set of novel sequences of lengths 3 to 16 (32 sequences of each length). This
training could be done one sequence at a time since the generation of each sequence
involved an exclusive set of modifiable weights, as only one input unit was active for
any sequence. The search for code weights for the test sequences was a c.onjugate
gradient search limited to 100 iterations.

100%

80% 'x

HRN 64 --0-

60% HRN 32 -+-
HRN 16 ~

40%
A HRN 8 . X· -

)(

N 4 'L:!.' •

20% A x.

0%
4 6 8 10 12 14 16 4 6 8 10 12 14 16

Figure 2: Percentage of novel sequences that can be generated versus length.

The graph on the left in Figure 2 shows how the performance varies with sequence
length for various networks with 16 hidden units. The points on this graph are the
average of 5 runs; each run began with a randomization of all weights. The worst
performance was produced by the SRN. The HRN gave the best performance: it
was able to produce around 90% of all sequences up to length 12. Interestingly,
a SRN (SRNZ in Figure 2) with frozen random recurrent weights from a suitable
distribution performed significantly better than the unconstrained SRN.

To some extent, the poor performance of the SRN was due to overtraining. This
was verified by training a SRN on 48 sequences oflength 8 (8 times as much data).
The performance improved greatly (SRN+ in Figure 2), but was still not as good
that of the HRN trained on the lesser amount of data. This suggests that the extra
parameters provided by the recurrent links in the SRN serve little useful purpose:
the net does well with fixed random values for those parameters and a HRN does
better without modifying any parameters in this operation. It appears that all that

40 Plate

is required in the recurrent operation is some stable random map.

The scaling performance of the HRN with respect to the number of hidden units
is good. ThE" graph on the right in Figure 2 shows the performance of HRNs with
R output units and varying numbers of hidden units (averages of 5 runs). As the
number of hidden units increases from 4 to 64 the generative capaeity increases
steadily. The sealing of sequence length with number of outputs (not shown) is also
good : it is over 1 bit per hidden unit. This compares very will with the 0.1 bit per
element aehieved by random vector eircular-c.onvolution (Section 2.3).

The training times for both the HRNs and the SRNs were very short. Both re­
quired around 30 passes through the training data to train the output and recurrent
weights. Finding a c.ode for test sequence of length 8 took the HRN an average of
14 passes. The SRN took an average of .57 passes (44 with frozen weights). The
SRN trained on more data took mueh longer for the initial training (average 281
passes) but the c.ode searc.h was shorter (average 31 passes).

4 TRAJECTORIES IN CONTINUOUS SPACE

HRNs ean also be used to generate trajectories through c.ontinuous spaee. Only two
modifieations need be made: (a) ehange the function on the output units to sigmoid
and add biases, and (b) use a fractional power for the key vector. A fractional power
vector f can be generated by taking a random unity-power vector k and multiplying
the phase angle of each frequency component by some fraction (\', i.e., f = kC/. The
result is that fi is similar to fi when the difference between i and j is less than 1/ (\' ,
and the similarity is greater for closer i and j. The output at the hidden layer will
be similar at successive time steps. If desired, the speed at which the trajectory is
traversed can be altered by changing (\'.

target X target Y -
net Y

Figure 3: Targets and outputs of a HRN trained to generate trajectories through
c.ontinuous space. X and Yare plotted against time.

A trajectory generating HRN with 16 hidden units and a key veetor k O.06 was trained
to produce pen trajectories (100 steps) for 20 instances of handwritten digits (two
of each). This is the same task that Simard and Le Cun [1992] used. The target
trajectories and the output of the network for one instance are shown in Figure 3.

5 DISCUSSION

One issue in processing sequential data with neural networks is how to present
the inputs to the network. One approach has been to use a fixed window on the
sequence, e.g., as in NETtaik [Sejnowski and Rosenberg, 1986] . A disadvantage
of this is any fixed size of window may not be large enough in some situations.
Another approach is to use a recurrent net to retain information about previous

Holographic Recurrent Networks 41

inputs. A disadvantage of this is the difficulty that recurrent nets have in retaining
information over many time steps. Generative networks offer another approach: use
the codes that generate a sequence as input rather than the raw sequence. This
would allow a fixed size network to take sequences of variable length as inputs (as
long as they were finite), without having to use multiple input blocks or windows.

The main attraction of circular convolution as an associative memory operator is
its affordance of the representation of hierarchical structure. A hierarchical HRN,
which takes advantage of this to represent sequences in chunks, has been built.
However, it remains to be seen if it can be trained by gradient descent.

6 CONCLUSION

The c.ircular convolution operation can be effectively incorporated into recurrent
nets and the resulting nets (HRNs) can be easily trained using gradient descent to
generate sequences and trajectories. HRNs appear to be more suited to this task
than SRNs, though SRNs did surprisingly well. The relatively high generative ca­
pacity of HRNs shows that the capacity of circular convolution associative memory
tplate, 1991a] can be greatly improved by adapting representations of vectors.

References

[Cleeremans et al., 1991] A. Cleeremans, D. Servan-Schreiber, and J. 1. McClel­
land. Graded state machines: The representation of temporal contingencies in
simple recurrent networks. Machine Learning, 7(2/3):161-194, 1991.

[Elman, 1991] J. Elman. Distributed representations, simple recurrent networks
and grammatical structure. Machine Learning, 7(2/3):195-226, 1991.

[Maskara and Noetzel, 1992] Arun Maskara and Andrew Noetzel. Forcing simple
recurrent neural networks to encode context. In Proceedings of the 1992 Long
Island Conference on Artificial Intelligence and Computer Graphics, 1992.

[Plate, 1991a] T. A. Plate. Holographic Reduced Representations. Technical Report
CRG-TR-91-1, Department of Computer Science, University of Toronto, 1991.

[Plate, 1991 b] T. A. Plate. Holographic Reduced Representations: Convolution
algebra for compositional distributed representations. In Proceedings of the 12th
International Joint Conference on Artificial Intelligence, pages 30-35, Sydney,
Australia, 1991.

[Rumelhart et al., 1986] D. E. Rumelhart, G. E. Hinton, and Williams R. J. Learn­
ing internal representations by error propagation. In Parallel distributed process­
ing: Explorations in the microstructure of cognition, volume 1, chapter 8, pages
318-362. Bradford Books, Cambridge, MA, 1986.

[Sejnowski and Rosenberg, 1986] T. J. Sejnowski and C. R. Rosenberg. NETtalk:
A parallel network that learns to read aloud. Technical report 86-01, Depart­
ment of Electrical Engineering and Computer Science, Johns Hopkins University,
Baltimore, MD., 1986.

[Simard and LeCun, 1992] P. Simard and Y. LeCun. Reverse TDNN: an architec­
ture for trajectory generation. In J. M. Moody, S. J. Hanson, and R. P. Lippman,
editors, Advances in Neural Information Processing Systems 4 (NIPS*91) , Den­
ver, CO, 1992. Morgan Kaufman.

