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Abstract 

Untill recently, state-of-the-art, large-vocabulary, continuous speech 
recognition (CSR) has employed Hidden Markov Modeling (HMM) 
to model speech sounds. In an attempt to improve over HMM we 
developed a hybrid system that integrates HMM technology with neu­
ral networks. We present the concept of a "Segmental Neural Net" 
(SNN) for phonetic modeling in CSR. By taking into account all the 
frames of a phonetic segment simultaneously, the SNN overcomes the 
well-known conditional-independence limitation of HMMs. In several 
speaker-independent experiments with the DARPA Resource Manage­
ment corpus, the hybrid system showed a consistent improvement in 
performance over the baseline HMM system. 

1 INTRODUCTION 

The current state of the art in continuous speech recognition (CSR) is based on the use 
of hidden Markov models (HMM) to model phonemes in context. Two main reasons 
for the popularity of HMMs are their high performance, in terms of recognition accu­
racy, and their computational efficiency However, the limitations of HMMs in modeling 
the speech signal have been known for some time. Two such limitations are (a) the 
conditional-independence assumption, which prevents a HMM from taking full advan-
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tage of the correlation that exists among the frames of a phonetic segment, and (b) the 
awkwardness with which segmental features can be incorporated into .HM:M systems. We 
have developed the concept of Segmental Neural Nets (SNN) to overcome the two .HM:M 
limitations just mentioned for phonetic modeling in speech. A segmental neural net is a 
neural network that attempts to recognize a complete phonetic segment as a single unit, 
rather than a sequence of conditionally independent frames. 

Neural nets are known to require a large amount of computation, especially for training. 
Also, there is no known efficient search technique for finding the best scoring segmen­
tation with neural nets in continuous speech. Therefore, we have developed a hybrid 
SNN/HM:M system that is designed to take full advantage of the good properties of both 
methods. The two methods are integrated through a novel use of the N-best (multiple 
hypotheses) paradigm developed in conjunction with the BYBLOS system at BBN [1]. 

2 SEGMENTAL NEURAL NET MODELING 

There have been several recent approaches to the use of neural nets in CSR. The SNN 
differs from these approaches in that it attempts to recognize each phoneme by using all 
the frames in a phonetic segment simultaneously to perform the recognition. By looking 
at a whole phonetic segment at once, we are able to take advantage of the correlation that 
exists among frames of a phonetic segments, thus ameliorating the limitations of .HM:Ms . 

warping 

phonetic .egment 

• core 

neural 
network 

Figure 1: The SNN model samples the frames and produces a single segment score. 

The structure of a typical SNN is shown in Figure 1. The input to the network is a fixed 
length representation of the speech segment. This input is scored by the network. If the 
network was trained to minimize a mean square error (MSE) or a relative entropy distor­
tion measure, the output of the network will be an estimate of the posterior probability 
P(CI:z:) of the phonetic class C given the segment :z: [2, 3]. This property of the SNN 
allows a natural extension to CSR: We segment the utterance into phonetic segments, 
and score each one of them seperately. The score of the utterance is simply the product 
of the scores of the individual segments. 
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The procedure described above requires the availability of some form of phonetic seg­
mentation of the speech. We describe in Section 3 how we use the HMM to obtain 
likely candidate segmentations. Here, we shall assume that a phonetic segmentation has 
been made available and each segment is represented by a sequence of frames of speech 
features. The actual number of such frames in a phonetic segment is variable. However, 
for input to the neural network, we need a fixed length representation. Therefore, we 
have to convert the variable number of frames in each segment to a fixed number of 
frames. We have considered two approaches to cope with this problem: time sampling 
and Oiscrete Cosine Transfonn (ocr). 
In the first approach, the requisite time warping is performed by a quasi-linear sampling 
of the feature vectors comprising the segment to a fixed number of frames (5 in our 
system). For example, in a 17-frame phonetic segment, we use frames 1, 5, 9, 13, and 17 
as input to the SNN. The second approach uses the Discrete Cosine Transfonn (OCT). 
The ocr can be used to represent the frame sequence of a segment as follows. Consider 
the sequence of cepstral features across a segment as a time sequence and take its ocr. 
For an m frame segment, this transfonn will result in a set of m OCT coefficients for 
each feature. Truncate this sequence to its first few coefficients (the more coefficients 
, the more precise the representation). To keep the number of features the same as in 
the quasi-linear sampling, we use only five coefficients. If the input segment has less 
than five frames, we initially interpolate in time so that a five-point ocr is possible. 
Compared to the quasi-linear sampling, OCT has the advantage of using information 
from all input frames. 

Duration: Because of the time warping function, the SNN score for a segment is inde­
pendent of the duration of the segment. In order to provide duration infonnation to the 
SNN, we constructed a simple durational model. For each phoneme, a histogram was 
made of segment durations in the training data. This histogram was then smoothed by 
convolving with a triangular window, and probabilities falling below a floor level were 
reset to that level. The duration score was multiplied by the neural net score to give an 
overall segment score. 

3 THE N-BEST RESCORING PARADIGM 

Our hybrid system is based on the N-best rescoring paradigm [1], which allows us to 
design and test the SNN with little regard to the usual problem of searching for the 
segmentation when dealing with a large vocabulary speech recognition system. 

Figure 2 illusrates the hybrid system. Each utterance is decoded using the BBN BYBLOS 
system [4]. The decoding is done in two steps: First the N-best recognition is performed, 
producing a list of the candidate N best-scoring sentence hypotheses. In this stage, a 
relatively simple HMM: is used for computation pUIposes. The length of the N-best list 
is chosen to be long enough to almost always include the correct answer. The second 
step is the HMM: rescoring, where a more sophisticated HMM is used. The recognition 
process may stop at this stage, selecting the top scoring utterance of the list (HMM I-best 
output). 

To incOlporate the SNN in the N -best paradigm, we use the HMM system to generate 
a segmentation for each N-best hypothesis, and the SNN to generate a score for the 
hypothesis USing the HMM: segmentation. The N-best list may be reordered based on 
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SNN scores alone. In this case the recognition process stops by selecting the top scoring 
utterance of the rescored list (NN I-best output). 
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Figure 2: Schematic diagram of the hybrid SNN/HMM system 

The last stage in the hybrid system is to combine several scores for each hypothesis, 
such as SNN score, HMM: score, grammar score, and the hypothesized number of words 
and phonemes. (The number of words and phonemes are included because they serve 
the same pUIpose as word and phoneme insertion penalties in a HMM: CSR system.) We 
form a composite score by taking a linear combination of the individual scores. The 
linear combination is determined by selecting the weights that give the best performance 
over a development test set. These weights can be chosen automatically [5]. After we 
have rescored the N-Best list, we can reorder it according to the new composite scores. 
If the CSR system is required to output just a single hypothesis, the highest scoring 
hypothesis is chosen (hybrid SNN/HMM top choice in Figure 2). 

4 SNN TRAINING 

The training of the phonetic SNNs is done in two steps. In the first training step, we 
segment all of the training utterances into phonetic segments using the HMM: models and 
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the utterance transcriptions. Each segment then serves as a positive example of the SNN 
output corresponding to the phonetic label of the segment and as a negative example for 
all the other phonetic SNN outputs (we are using a total of 53 phonetic outputs). We call 
this training method i-best training. 

The SNN is trained using the log-error distortion measure [6], which is an extension 
of the relative entropy measure to an M -class problem. To ensure that the outputs are 
in fact probabilities, we use a sigmoidal nonlinearity to restrict their range in [0, 1] and 
an output normalization layer to make them sum to one. The models are initialized by 
removing the sigmoids and using the MSE measure. Then we reinstate th~ sigmoids and 
proceed with four iterations of a quasi-Newton [7] error minimization algorithm. For the 
adopted error measure, when the neural net non-linearity is the usual sigmoid function, 
there exists a unique minimum for single-layer nets [6]. 

The I-best training described has one drawback: the training does not cover all the cases 
that the network will be required to encounter in the N-best rescoring paradigm. With 1-
best training, given the correct segmentation, we train the network to discriminate between 
correct and incorrect labeling. However, the network will also be used to score N-best 
hypotheses with incorrect segmentation. Therefore, it is important to train based on the 
N-best lists in what we call N-best training. During N-best training, we produce the N­
best lists for all of the training sentences, and we then train positively with all the correct 
hypotheses and negatively on the "misrecognized" parts of the incorrect hypothesis. 

4.1 Context Modelling 

Some of the largest gains in accuracy for HMM CSR systems have been obtained with 
the use of context (i.e., phonetic identity of neighbOring segments). Consequently, we 
implemented a version of the SNN that provided a simple model of left-context. In 
addition to the SNN previously described, which only models a segment's phonetic 
identity and makes no reference to context, we trained 53 additional left-context networks. 
Each of these 53 networks were identical in structure to the context-independent SNN. 
In the recognition process, the segment score is obtained by combining the output of 
the context-independent SNN with the corresponding output of the SNN that models the 
left-context of the segment. This combination is a weighted average of the two network 
values, where the weights are determined by the number of occurrences of the phoneme 
in the training data and the number of times the phoneme has its present context in the 
training data. 

4.1.1 Regularization Techniques for Context Models 

During neural net training of context models, a decrease of the distortion on the training 
set often causes an increase of the distortion on the test set. This problem is called 
overtraining, and it typically occurs when the number of training samples is on the order 
of the number of the model parameters. Regularization provides a class of smoothing 
techniques to ameliorate the overtraining problem. Instead of minimizing the distortion 
measure alone, we are minimizing the following objective function: 

(1) 
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where Wo is the set of weights corresponding to the context-independent model, Nd 
is the number of data points, and >'1, >'2, 711, 712 are smoothing parameters. The first 
regularization tenn is used to control the excursion of the weights in general and the other 
to control the degree to which the context-dependent model is allowed to deviate from the 
corresponding context-independent model (to achieve this first we initialize the context­
dependent models with the context-independent model). In our initial experiments, we 
used values of >'1 = >'2 = 1.0, 711 = I, 712 = 2. 

When there are very few training data for a particular context model, the regularization 
tenns in (!) p:'evail, Cflnstraining the model parameters to remain close to their initial 
estimates. The regularization tenn is gradually turned off with the presence of more data. 
What we accomplish in this way is an automatic mechanism that controls overtraining. 

4.2 Elliptical Basis Functions 

Our efforts to use multi-layer structures has been rather unsuccessful so far. The best 
improvement we got was a mere 5% reduction in error rate over the single-layer perfor­
mance, but with a 10-fold increase in both number of parameters and computation time. 
We suspect that our training is getting trapped in bad local minima. Due to the above 
considerations, we considered an alternative multi-layer structure, the Elliptical Basis 
Function (EBF) network. EBFs are natural extensions of Radial Basis Functions, where 
a full covariance matrix is introduced in the basis functions. As many researchers have 
suggested, EBF networks provide modelling capabilities that are as powerful as multi­
layer perceptrons. An advantage of EBF is that there exist well established techniques 
for estimating the elliptical basis layer. As a consequence, the problem of training an 
EBF network can be reduced to a one-layer problem, i.e., training the second layer only. 

Our approach with EBF is to initialize them with Maximum Likelihood (ML). ML training 
allows us to use very detailed context models, such as triphones. The next step, which 
is not yet implemented, is to either proceed with discriminative NN training, or use a 
nonlinearity at the outout layer and treat the second layer as a single-layer feedforward 
model, or both. 

5 EXPERIMENTAL CONDITIONS AND RESULTS 

Experiments to test the performance of the hybrid system were performed on the speaker­
independent (SI) portion of the DARPA 1000-word Resource Management speech corpus. 
The training set consisted of utterances from 109 speakers, 2830 utterances from male 
speakers and 1160 utterances from female speakers. We have tested our system with 
5 different test sets. The Feb '89 set was used as a cross-validation set for the SNN 
system. Feb '89 and Oct '89 were used as development sets whenever the weights for 
the combination of two or more models were to be estimated. Feb '91 and the two Sep 
'92 sets were used as independent test sets. 

Both the NN and the HMM systems had 3 separate models made from male, female, and 
combined data. During recognition all 3 models were used to score the utterances, and 
the recognition answer was decided by a 3-way gender selection: For each utterance, the 
model that produced the highest score was selected. The HMM used was the February 
'91 version of the BBN BYBLOS system. 
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In the experiments, we used SNNs with 53 outputs, each representing one of the phonemes 
in our system. The SNN was used to rescore N-best lists of length N = 20. The input 
to the net is a fixed number of frames of speech features (5 frames in our system). The 
features in each to-ms frame consist of 16 scalar values: power, power difference, and 14 
mel-warped cepstral coefficients. For the EBF, the differences of the cepstral parameters 
were used also. 

Table 1: SNN development on February '89 test set 
~--------------------~~~~--~-~ Word EITor (%) 

Original SSN (MSE) 
+ Log-Error Criterion 
+ N-Best training 
+ Left Context 
+ Regularization 
+ word,phoneme penalties 

EBF 

13.7 
11.6 
9.0 
7.4 
6.6 
5.7 
4.9 

Table I shows the word error rates at the various stages of development. All the experi­
ments mentioned below used the Feb '89 test set. The original I-layer SNN was trained 
using the I-best training algorithm and the MSE criterion, and gave a word error rate 
of 13.7%. The incorporation of the duration and the adoption of the log-error training 
criterion both resulted in some improvement, bringing the error rate down to 11.6%. 
With N-best training the error rate dropped to 9.0%; adding left context models reduced 
the word error rate down to 7.4%. When the the context models were trained with the 
regularization criterion the error rate dropped to 6.6%. All of the above results were ob­
tained using the mean NN score (NN score divided by the number of segments). When 
we used word and phone penalties, the perfonnance was even better, a 5.7% word error 
rate. For the same conditions, the perfonnance for the EBF system was 4.9% word error 
rate. We should mention that the implementation of training with regularization was not 
complete at the time the hybrid system was tested on the September 92 test, so we will 
exclude it from the NN results presented below. 

The final hybrid system included the HM:M, the SNN and EBF models, and Table 2 
summarizes its perfonnance (in this table, NN stands for the combination of SNN and 
EBF). We notice that with the exception of of the Sep '92 test sets the word error of the 
mfM was roughly around 3.5%(3.8, 3.7 and 3.4%). For the same test sets, the NN had 
a word error slightly higher than 4.0%, and the hybrid NN/HMM system a word error 
rate of 2.7%. We are very happy to see the perfonnance of our neural net approaching 
the perfonnance of the HMM. It is also worthwhile to mention that the perfonnance of 
the hybrid system for Feb '89, Oct '89 and Feb '91 is the best perfonnance reported so 
far for these sets. 

Special mention has to be made for the Sep '92 test sets. These test sets proved to be 
radically different than the previous released RM tests, resulting in almost a doubling of 
the HM:M word error rate. The deterioration in perfonnance of the hybrid system was 
bigger, and the improvement due to the hybrid system was less than 10% (compared 
to an improvement of :::::: 25% for the other 3 sets). We have all been baffled by these 
unexpected results, and although we are continuously looking for an explanation of this 



A Hybrid Neural Net System for State-of-the-Art Continuous Speech Recognition 711 

System 
HMM: 
NN 
NN+HMM: 

Feb '89 
3.7 
4.0 
2.7 

Word Error % 
Oct '89 Feb '91 

3.8 3.4 
4.2 4.1 
2.7 2.7 

Sep '92 
6.0 
7.4 
5.5 

Table 2: Hybrid Neural Net/HM1vf system. 

strange behaviour our efforts have not yet been successful. 

6 CONCLUSIONS 

We have presented the Segmental Neural Net as a method for phonetic modeling in large 
vocabulary CSR systems and have demonstrated that, when combined with a conventional 
HMM, the SNN gives a significant improvement over the perfonnance of a state-of-the­
art HMM CSR system. The hybrid system is based on the N-best rescoring paradigm 
which, by providing the HMM segmentation, drastically reduces the computation for 
our segmental models and provides a simple way of combining the best aspects of two 
systems. The improvements achieved from the use of a hybrid system vary from less 
than 10% to about 25 % reduction in word error rate, depending on the test set used. 
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