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Abstract 

The primate brain must solve two important problems in grasping move­
ments. The first problem concerns the recognition of grasped objects: 
specifically, how does the brain integrate visual and motor information 
on a grasped object? The second problem concerns hand shape planning: 
specifically, how does the brain design the hand configuration suited to the 
shape of the object and the manipulation task? A neural network model 
that solves these problems has been developed. The operations of the net­
work are divided into a learning phase and an optimization phase. In the 
learning phase, internal representations, which depend on the grasped ob­
jects and the task, are acquired by integrating visual and somatosensory 
information. In the optimization phase, the most suitable hand shape for 
grasping an object is determined by using a relaxation computation of the 
network. 

* Present Address: Parallel Distributed Processing Research Dept., Sony Corporation, 
6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141, Japan 
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1 INTRODUCTION 

It has previously been established that, while reaching out to grasp an object, the human 
hand preshapes according to the shape of the object and the planned manipulation (Jean­
nerod, 1984; Arbib et al., 1985). The preshaping of the human hand suggests that prior to 
grasping an object the 3-dimensional form of the object is recognized and the most suitable 
hand configuration is preset depending on the manipulation task. 

It is supposed that the human recognizes objects using not only visual information but also 
somatosensory information when the hand grasps them. Visual information is made from 
the 2-dimensional image in the visual system of the brain. Somatosensory information 
is closely related to motor information, because it depends on the prehensile hand shape 
(Le., finger configuration). We hypothesize that an internal representation of a grasped 
object is formed in the brain by integrating visual and somatosensory information. Some 
physiological studies support our hypothesis. For example, Taira et al. (1990) found that 
the activity of hand-movement-related neurons in the posterior parietal association cortex 
were highly selective to the shape and/or the orientation of manipulated switches. 

How can the neural network integrate different kinds of information? Merely uniting vi­
sual image with somatosensory information does not lead to any interesting representation. 
Our basic idea is that information compression is applied to integrating different kinds of 
information. It is useful to extract the essential information by compressing the visual and 
somatosensory information. 

lrie & Kawato (1991) pointed out that multi-layered perceptrons have the ability to ex­
tract features from the input signals by compressing the information from input signals. 
Katayama & Kawato (1990) proposed a learning schema in which an internal represen­
tation of the grasped object was acquired using information compression. Developing the 
schema of Katayama et al., we have devised a neural network model for recognizing objects 
and planning hand shapes (e.g., Fukumura et al. 1991). This neural network consists of five 
layers of neurons with only forward connections as shown in Figure 1. The input layer (1 st 
layer) and the output layer (5th layer) of the network have the same structure. There are 
fewer neurons in the 3rd layer than in the 1st and 5th layers. The operations of the network 
are divided into the learning phase, which is discussed in section 2 and the optimization 
phase, which is discussed in section 3. 

2 INTEGRATION OF VISUAL AND SOMATOSENSORY 
INFORMATION USING NETWORK LEARNING 

In the learning phase, the neural network learns the relation between the visual information 
(Le.,visual image) and the somatosensory information which, in this paper, is regarded as 
information on the prehensile hand configuration (Le., finger configuration). 

Both vector x representing the visual image of an object and vector y representing the pre­
hensile hand configuration to grasp it are fed into the 1 st layer (the input layer). The synaptic 
weights of the network are repeatedly adjusted so that the 5th layer outputs the same vec­
tors x and y as are fed into the 1st layer. In other words, the network comes to realize the 
identity map between the 1st layer and the 5th layer through a learning process. The most 
important point of the neural network model is that the number of neurons in the 3rd layer 
is smaller than the number of neurons in the 1st layer (which is equal to the number of 
neurons in the 5th layer). Therefore, the information from x and y is compressed between 
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Figure 1: A neural network model for integrating visual image x and prehensile hand con­
figuration y. The internal representation z of a grasped object is acquired in the third layer. 

the 1st layer and the 3rd layer, and restored between the 3rd layer and the 5th layer. Once 
the network learning process is complete, visual image x and prehensile hand configuration 
yare integrated in the network. Consequently, the internal representation z of the grasped 
object, which should include enough information to reproduce x and y, is formed in the 3rd 
layer. 

Prehensile hand configuration in grasping movements were measured and the learning of 
the network was simulated by a computer. In behavioral experiments, three kinds of wooden 
objects were prepared: five circular cylinders whose diameters were 3 cm, 4 cm, 5 cm, 6 cm 
and 7 cm; four quadrangular prisms whose side lengths were 3 cm, 4 cm, 5 cm and 6 cm; 
and three spheres whose diameters were 3 cm, 4 cm and 5 cm. Data input to the network 
was comprised of visual image x and prehensile hand configuration y. 

Visual images of objects are formed through complicated processes in the visual system of 
the brain. For simplicity, however, projections of objects onto a side plane and/or a bottom 
plane were used instead of real visual images. The area of each pixel of the ,e-rojected 
image was fed into the network as an element of visual image x. A DataGloveT (V P L) 
was used to measure finger configurations in grasping movements. We attached sixteen 
optical fibers, whose outputs were roughly inversely proportional to finger joint-angles, to 
the DataGlove. The subject was instructed to grasp the objects on the table tightly with 
the palm and all the fingers. The subject grasped twelve objects thirty times each, which 
produced 360 prehensile patterns for use as training data for network learning. 

In the computer simulation, six neurons were set in the 3rd layer. The baCk-propagation 
learning method was applied in order to modify the synaptic weights in the network. Fig­
ure 2 shows the activity of neurons in the 3rd layer after the learning had sufficiently been 
performed. Some interesting features of the internal representations were found in Figure 
2. The first is that the level of neuron activity in the 3rd layer increased monotonically as 
the size of the object increased. The second is that, except for the magnitude, the neuron 
activation patterns for the same kinds of objects were almost the same. Furthermore, the 
activation patterns were similar for circular cylinders and quadrangular prisms, but were 
quite different for spheres. In other words, similar representations were acquired for simi­
larly shaped objects. We concluded that the internal representations were formed in the 3rd 
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Figure 2: Internal representations of grasped objects. Graph a) shows the neuron activa­
tion patterns for five circular cylinders whose diameters were 3 cm, 4 cm, 5 cm, 6 cm and 
7 cm. Graph b) shows the neuron activation patterns for four quadrangular prisms whose 
side lengths were 3 cm, 4 cm, 5 cm and 6 cm. Finally, Graph c) shows the neuron activa­
tion patterns for three spheres whose diameters were 3 cm, 4 cm and 5 cm. The abscissa 
represents the index of the six neurons in the 3rd layer, while the ordinate represents their 
activity. These values were normalized from -1 to + 1. 

layer and changed topologically according to the shapes and sizes of the grasped objects. 

3 DESIGN OF PREHENSILE HAND SHAPES 

The neural network that has completed the learning can design hand shapes to grasp any 
objects in the optimization phase. Determining prehensile hand shape (i.e., finger config­
uration) is an ill-posed problem, because there are many ways to grasp any given object. 
In other words, prehensile hand configuration cannot be determined uniquely for anyone 
object. In order to solve this indeterminacy, a criterion, a measure of performance for any 
possible prehensile configuration is introduced. 

The criterion should normally be defined based on the dynamics of the human hand and the 
manipulation task. However, for simplicity, the criterion is defined based only on the static 
configuration of the fingers, which is represented by vector y. We assumed that the central 
nervous system adopts a stable hand configuration to grasp an object, which corresponds to 
flexing the fingers as much as possible. The output of the DataGlove sensor decreases as 
finger flexion increases. Therefore, the criterion C l (y) is defined as follows: 

(1) 

where Yi represents the ith output of the sixteen DataGlove sensors. Minimizing the crite­
rion C l (y) requires as much finger flexing as possible. 

Finding values of Yi (i = 1,2, ... , 16) so as to minimize C l (y) is an optimization problem 
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with constraints. In the optimization phase, the neural network can solve this optimization 
problem using a relaxation computation as follows. When an object is specified, the visual 
image x* of the object is input to the 1 st layer as an input signal and given to the 5th layer 
as a reference signal. We call neurons in the 1st and the 5th layers which represent visual 
image x image neurons, and call neurons in the 1st and the 5th layers which represent finger 
configuration y hand neurons. Let us define the following energy function of the network. 

1 ~ * I 2 1 ~ I 2 1 ~_2 
E(y) = 2 ~(Xi - Xi) + 2 ~(Yj - Yj) + A' 2: ~ Yj' 

i j j 

(2) 

Here, xi is the ith element of the image x* which is fed into the ith image neuron in the 
1 st layer, and x~ is the output of the ith image neuron in the 5th layer. Yj is the activity 
of the jth hand neuron in the 1st layer, and yj is the output of the jth hand neuron in the 
5th layer. A is a positive regularization parameter which decreases gradually during the 
relaxation computation. The first term and the second term of equation (2) require that 
the network realizes the identity map between the input layer and the output layer as well 
as in the learning phase. This requirement guarantees that a hand whose configuration is 
specified by vector y can grasp an object whose visual image is x*. The third term of 
equation (2) represents the criterion C1 (y). In the optimization phase, the values of the 
synaptic weights are fixed. Instead. the hand neuron changes its state autonomously while 
obeying the following differential equation: 

dYk aE 
c ds = - aYk' k = 1,2, ... ,16. (3) 

Here. s is the relaxation time required for the state change of the hand neuron, and c is a 
positive time constant. The right-hand side of equation (3) can be transformed as follows: 

_ aE = ~(x; _ x~) ax~ + ~(yj _ y',) ay} + (Yk _ yk) (ay~ - 1) - AYk. (4) 
8Yk ~ 8Yk ~ J 8Yk 8Yk 

I J 

It is straightforward to show that the first three terms of equation (4) are the error signals at 
the kth hand neuron, which can be calculated backward from the output layer to the input 
layer. The fourth term of equation (4) is a suppressive signal which is given to the hand 
neuron by itself. When the state of the hand neuron obeys the differential equation (3), the 
time change E can be expressed as : 

dE = L dYk aE = -c L(dyk )2 < O. (5) 
ds k ds aYk k ds -

Therefore, the energy function E always decreases and the network comes to the equilibrium 
state that is the (local) minimum energy state. The outputs of the hand neurons in the 
equilibrium state represent the solution of the optimization problem which corresponds to 
the most suitable finger configuration. 

The relaxation computation of the neural network was simulated. For example, when given 
the image of a circular cylinder whose diameter was 5 cm, the prehensile finger configura­
tion was computed. After a hundred-thousand iterations for the relaxation computation, we 
had the results shown in Figure 3. The left sied shows the hand shape that had the minimum 
value of the criterion of all the training data recorded when the subject grasped a circular 
cylinder whose diameter was 5 cm. The right side shows the hand shape produced by re­
laxation computation. These two hand shapes were very similar, which indicated that the 
network reproduced hand shape by using relaxation computation. 
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Trainnig Data Results of relaxation 

Figure 3: Prehesile hand shapes for grasping a circular cylinder whose diameter was 5cm. 

4 VARIOUS TYPES OF PREHENSIONS 

In the sections above, the subject was instructed to grasp objects using only one type of 
prehension. It is, however, thought that a human chooses different types of prehensions 
depending on the manipulation tasks. In order to investigate the dependence of the internal 
representation on the type of prehension, the second behavioral experiment was conducted. 
In this experiment, five circular cylinders and three spheres which were the same size as 
those in the first experiment were prepared. The subject was first instructed to grasp the 
objects tightly with his palm and all of his fingers, and then to grasp the same objects with 
only his fingertips. Iberall et al.(1988) referred to the first prehension and the second pre­
hension as palm opposition and pad opposition, respectively. The subject grasped eight 
objects in two different types of prehensions twenty times each, which produced 320 pre­
hensile patterns. Four neurons were set in the 3rd layer of the network and the network 
learning was simulated using these prehensile patterns as training data. Figure 4 shows the 
neuronal activation patterns formed in the 3rd layer after the network learning. Even if the 
grasped objects were the same, the neuron activation pattern for palm opposition was quite 
different from that for palm opposition. 

The neural network can reproduce different prehension, by introducing different criteria. 
Cl (y) is definded corresponding to palm opposition. Furthermore, we defind another crite­
rion C2(Y), corresponding to pad opposition. 

i{MP,CM idP 

C2(y) = 2: yf + 2:(1.0 - Yj)2. (6) 

Minimizing the criterion C2(y) demands that the MP joints (metacarpophalangeal joints) of 
the four fingers and the eM joint (carpometacarpal joint) of the thumb be flexed as much 
as possible and that the IP joints (interphalangeal joints) of all five fingers be stretched as 
much as possible. The relaxation computation of the neural network was simulated, when 
given the image of a sphere whose diameter was 5 cm. The results of the relaxation compu­
tation are shown in Figure 5. Adopting the different criteria, the neural network reproduced 
different prehensile hand configurations which corresponded to a) palm opposition and b) 
pad opposition. 
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Figure 4: Internal representations of grasped objects formed in the 3rd layer of the network_ 
Graphs a), b), c) and d) show the activation patterns of neurons for palm oppositions when 
grasping 5 circular cylinders, for pad oppositions when grasping 5 circular cylinders, for 
palm oppositions when grasping 3 spheres and for pad oppositions when grasping 3 spheres, 
respectively. See Figure 2 legend for description. 

5 DISCUSSION 

In view of the function of neurons in the posterior parietal association cortex, we have de­
vised a neural network model for integrating visual and motor information. The proposed 
neural network model is an active sensing model, as it learns only when an object is suc­
cessfully grasped. In this paper, tactile information is not treated, as the materials of the 
grasped objects are ,not considered for simplicity. We know that tactile information plays 
an important role in the recognition of grasped objects. The neural network model shown 
in Figure 1 can easily be developed so as to integrate visual, motor and tactile information. 
However, it is not clear how the internal representations of grasped objects is changed by 
adding tactile information. 

The critical problem in our neural network model is how many neurons should be set in the 
3rd layer to represent the shapes of grasped objects. If there are too few neurons in the 3rd 
layer, the 3rd layer cannot represent enough information to restor x and y between the 3rd 
layer and the 5th layer; that is, the network cannot learn to realize the identity map between 
the input layer and the output layer. If there are too many neurons in the 3rd layer, the 
network cannot obtain useful representations of the grasped objects in the 3rd layer and the 
relaxation computation sometimes fails. In the present stage, we have no method to decide 
an adequate number of neurons for the 3rd layer. This is an important task for the future. 
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Figure 5: Prehensile hand configuration a) for palm opposition and prehensile hand con­
figuration b) for pad opposition when grasping a sphere whose diameter was 5 cm. The 
left sides show the hand shapes with the minimum values of the criterions for all training 
data recorded when the subject grasped a sphere whose diameter was 5 cm. The right sides 
show the hand shapes made by the relaxation computation. 
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