
A Connectionist Symbol Manipulator
That Discovers the Structure of

Context-Free Languages

Michael C. Mozer and Sreerupa Das
Department of Computer Science &

Institute of Cognitive Science
University of Colorado

Boulder, CO 80309-0430

Abstract

We present a neural net architecture that can discover hierarchical and re­
cursive structure in symbol strings. To detect structure at multiple levels,
the architecture has the capability of reducing symbols substrings to single
symbols, and makes use of an external stack memory. In terms of formal
languages, the architecture can learn to parse strings in an LR(O) context­
free grammar. Given training sets of positive and negative exemplars,
the architecture has been trained to recognize many different grammars.
The architecture has only one layer of modifiable weights, allowing for a
straightforward interpretation of its behavior.

Many cognitive domains involve complex sequences that contain hierarchical or
recursive structure, e.g., music, natural language parsing, event perception. To il­
lustrate, "the spider that ate the hairy fly" is a noun phrase containing the embed­
ded noun phrase "the hairy fly." Understanding such multilevel structures requires
forming reduced descriptions (Hinton, 1988) in which a string of symbols or states
("the hairy fly") is reduced to a single symbolic entity (a noun phrase). We present
a neural net architecture that learns to encode the structure of symbol strings via
such red uction transformations.

The difficult problem of extracting multilevel structure from complex, extended
sequences has been studied by Mozer (1992), Ring (1993), Rohwer (1990), and
Schmidhuber (1992), among others. While these previous efforts have made some

863

864 Mozer and Das

input
queue

d~ft demon units

stack pop

push push

Figure 1: The demon model.

progress, no one has claimed victory over the problem. Our approach is based on a
new perspective-one of symbolic reduction transformations-which affords a fresh
attack on the problem.

1 A BLACKBOARD ARCHITECTURE

Our inspiration is a blackboard style architecture that works as follows. The input,
a sequence of symbols, is copied onto a blackboard-a scratch pad memory-one
symbol at a time. A set of demon, watch over the blackboard, each looking for a
specific pattern of symbols. When a demon observes its pattern, it fire" causing
the pattern to be replaced by a symbol associated with that demon, which we'll call
its identity. This process continues until the entire input string has been read or no
demon can fire. The sequence of demon firings and the final blackboard contents
specify the structure of the input.

The model we present is a simplified version of this blackboard architecture. The
blackboard is implemented as a stack. Consequently, the demons have no control
over where they write or read a symbol; they simply push and pop symbols from
the stack. The other simplification is that the demon firing is based on template
matching, rather than a more sophisticated form of pattern matching.

The demon model is sketched in Figure 1. An input queue holds the input string
to be parsed, which is gradually transferred to the stack. The top k stack symbols
are encoded in a set of dack unit&; in the current implementation, k = 2. Each
demon is embodied by a special processing unit which receives input from the stack
units. The weights of each demon unit specify a pair of symbols, which the demon
unit matches against the two stack symbols. If there is a match, the demon unit
pops the top two stack symbols and pushes its identity. If no demon unit matches,
an additional unit, called the default unit, becomes active. The default unit is
responsible for transferring a symbol from the input queue onto the stack.

Connectionist Symbol Manipulator Discovers Structure of Context-Free Languages 865

S -+ a b

S -+ a X

X -+ S b

S

/\
a X

/\
S b

/\
a b

Figure 2: The rewrite rules defining a grammar that generates strings of the form
anbn and a parse tree for the string aabb.

2 PARSING CONTEXT-FREE LANGUAGES

Each demon unit reduces a pair of symbols to a single symbol. We can express
the operation of a demon as a rewrite rule of the form X --+ a b, where the lower
case letters denote symbols in the input string and upper case letters denote the
demon identities, also symbols in their own right. The above rule specifies that
when the symbols a and b appear on the top of the stack, in that order, the X
demon unit should fire, erasing those two symbols and replacing them with an X.
Demon units can respond to internal symbols (demon identities) instead of input
symbols, allowing internal symbols on the right hand side of the rule. Demon units
can also respond to individual input symbols, achieving rules of the form X --+ a.

Multiple demon units can have the same identity, leading to rewrite rules of a
more general form, e.g., X --+ a b lYe I d Z I a. This class of rewrite rules can
express a subset of context-free grammars. Figure 2 shows a sample grammar that
generates strings of the form anbn and a parse tree for the input string aabb. The
demon model essentially constructs such parse trees via the sequence of reduction
operations.

That each rule has only one or two symbols on the right hand side imposes no
limitation on the class of grammars that can be recognized. However, the demon
model does require certain knowledge about the grammars to be identified. First,
the maximum number of rewrite rules and the maximum number of rules having the
same left-hand side must be specified in advance. This is because the units have
to be allocated prior to learning. Second, the LR-class of the grammar must be
given. To explain, any context-free grammar can be characterized as LR(n), which
indicates that the strings of the grammar can be parsed from left to right with n
symbols of look ahead on the input queue. The demon model requires that n be
specified in advance. In the present work, we examine only LR(O) grammars, but
the architecture can readily be generalized to arbitrary n.

Giles et al. (1990), Sun et al. (1990), and Das, Giles, and Sun (1992) have previously
explored the learning of context-free grammars in a neural net. Their approach was
based on the automaton perspective of a recognizer, where the primary interest was
to learn the dynamics of a pushdown automaton. There has also been significant
work in context-free grammar inference using symbolic approaches. In general, these
approaches require a significant amount of prior information about the grammar
and, although theoretically sound, have not proven terribly useful in practice. A
promising exception is the recent proposal of Stolcke (1993).

. ..

866 Mozer and Das

3 CONTINUOUS DYNAMICS

So far, we have described the model in a discrete way: demon firing is all-or­
none and mutually exclusive, corresponding to the demon units achieving a unary
representation. This may be the desired behavior following learning, but neural net
learning algorithms like back propagation require exploration in continuous state
and weight spaces and therefore need to allow partial activity of demon units. The
continuous activation dynamics follow.

Demon unit i computes the distance between its weights, Wi, and the input, x:
di.ti = bi IWi - xl 2 , where bi is an adjustable bias associated with the unit. The
activity of unit i, denoted .i, is computed via a normalized exponential transform
(Bridle, 1990j Rumelhart, in press),

e-di,ti

·i = L:i e-didj ,

which enforces a competition among the units. A special unit, called the default
unit, is designed to respond when none of the demons fire strongly. Its activity,
.del, is computed like that of any demon unit with di.tdel = bdel'

4 CONTINUOUS STACK

Because demon units can be partially active, stack operations need to be performed
partially. This can be accomplished with a continuou.s .stack (Giles et al., 1990).
Unlike a discrete stack where an item is either present or absent, items can be
present to varying degrees. Each item on the stack has an associated thickneu, a
scalar in the interval [0,1] indicating what fraction of the item is present (Figure 3).

To understand how the thickness plays a role in processing, we digress briefly and
explain the encoding of symbols. Both on the stack and in the network, symbols
are represented by numerical vectors that have one component per symbol. The
vector representation of some symbol X, denoted rx, has value 1 for the component
corresponding to X and 0 for all other components. H the symbol has thickness t,
the vector representation is trX'

Although items on the stack have different thicknesses, the network is presented
with compo.site .ymbol.s having thickness 1.0. Composite symbols are formed by
combining stack items. For example, in Figure 3, composite symbol 1 is defined as
the vector .2rX + .5rz + .3rv. The input to the demon network consists of the top
two composite symbols on the stack.

The advantages of a continuous stack are twofold. First, it is required for network
learningj if a discrete stack were used, a small change in weights could result in a big
(discrete) change in the stack. This was the motivation underlying the continuous
stack used by Giles et ale Second, the continuous stack is differentiable and hence
allows us to back propagate error through the stack during learning. While we have
summarized this point in one sentence, the reader must appreciate the fact that it
is no small feat! Giles et ale did not consider back propagation through the stack.

Each time step, the network performs two operations on the stack:

Connectionist Symbol Manipulator Discovers Structure of Context-Free Languages 867

top of stack thickness
x .2

composite Z .5
symbol!

V .4

composite X .7 symbol 2
y .4

Figure 3: A continuous stack. The symbols indicate the contentsj the height of
a stack entry indicates its thickness, also given by the number to the right. The
top composite symbol on the stack is a combination of the items forming a total
thickness of 1.0j the next composite symbol is a combination of the items making
up the next 1.0 units of thickness.

Pop. IT a demon unit fires, the top two composite symbols should be popped from
the stack (to be replaced by the demon's identity). If no demon unit fires, in which
case the default unit becomes active, the stack should remain unchanged. These
behaviors, as well as interpolated behaviors, are achieved by multiplying by 6deJ

the thickness of any portion of a stack item contributing to the top two composite
symbols. Remember that BdeJ is 0 when one or more demon units are strongly
active, and is 1 when the default unit is fully active.

Push. The symbol written onto the stack is the composite symbol formed by sum­
ming the identity vectors of the demon units, weighted by their activities: L:i 8iri,

where ri is the vector representing demon i's identity. Included in this summation
is the default unit, where rdeJ is defined to be the composite symbol over thickness
'deJ of the input queue. (After a thickness of BdcJ is read from the input queue, it
is removed from the queue.)

5 TRAINING METHODOLOGY

The system is trained on positive and negative examples of a context-free grammar.
Its task is to classify each input string as grammatical or not. Because the grammars
can always be written such that the root of the parse tree is the symbol S (e.g.,
Figure 2), the stack should contain just S upon completion of processing ofa positive
example. For a negative example, the stack should contain anything but s.
These criteria can be translated into an objective function as follows. If one assumes
a Gaussian noise distribution over outputs, the probability that the top of the stack
contains the symbol S following presentation of example i is

pioot <X e- 1c,-rs I2 ,

where Ci is the vector representing the top composite symbol on the stackj and the
probability that the total thickness of the stack is 1 (i.e., the stack contains exactly
one item) is

868 Mozer and Das

where n is the total thickness of the stack and ~ is a constant. For a positive
example, the objective function should be greatest when there is a high probability
of S being on the stack and a high probability of it being the sole item on the
stackj for a negative example, the objective function should be greatest when either
event has a low probability. We thus obtain a likelihood objective function whose
logarithm the learning procedure attempts to maximize:

L= IT IT
iEpos example iEneg example

Training sets were generated by hand, with a preference for shorter strings. Pos­
itive examples were generated from the grammarj negative examples were either
randomly generated or were formed by perturbing a grammatical string. In most
training sets, there were roughly 3-5 times as many negative examples as positive.
One might validly be concerned that we introduced some bias in our selection of
examples. Ifso, it was not deliberate. In the initial experiments reported below, our
goal was primarily to demonstrate that under some conditions, the network could
actually induce the grammar. In the next phase of our research, we plan a sys­
tematic investigation of the number and nature of examples required for successful
learning.

The total number of demon units and the (fixed) identity of each was specified
in advance of learning. For the grammar in Figure 2, we provided at least two
S demons and one X demon. Any number of demons beyond the minimum did
not affect performance. The initial weights {Wij} were selected from a uniform
distribution over the interval [.45, .55]. The bi were initialized to 1.0.

Before an example is presented, the stack is reset to contain only a single symbol, the
null symbol with vector representation 0 and infinite thickness. The example string
is placed in the input queue. The network is then allowed to run for 21-1 time steps,
which is exactly the number of steps required to process any grammatical string
of length I. One can intuit this fact by considering that it takes two operations to
process each symbol, one to transfer the symbol from the input queue to the stack,
and another to reduce the symbol.

The derivative of the objective function is computed with respect to the weight
parameters using a form of back propagation through time (Rumelhart, Hinton,
& Williams, 1986). This involves "unfolding" the architecture in time and back
propagating through the stack. Weights are then updated to perform gradient
ascent in the log likelihood function.

6 RESULTS AND DISCUSSION

We have successfully trained the architecture on a variety of grammars, including
those shown in Table 1. In each case, the network discriminates positive and nega­
tive examples perfectly on the training set. For the first three grammars, additional
(longer) strings were used to test network generalization performance. In each case,
generalization performance was 100%.

Connectionist Symbol Manipulator Discovers Structure of Context-Free Languages 869

s s x
a a

x
Figure 4: Sample weights for anbn • Weights are organized by demon unit, whose
identities appear above the rectangles. The top and bottom halves of the rectangle
represents connections from composite symbols 1 and 2, respectively. The darker
the shading is of a symbol in a rectangle, the larger the connection strength is from
the input unit representing that symbol to the demon unit. The weights clearly
indicate the three rewrite rules of the grammar.

Table 1: Grammars successfully learned by the demon model
I grammar name I rewrite rulel I

anbn S--+ablaX
X--+Sb

parenthesis balancing S --+ (J) 11 X T S S
X--+S

postfix s--+Yxlsx
x--+Y+ls+
Y--+alb

pseudo natural language S --+ NP VP
NP --+ d NP2 I NP2
NP2 --+ n I an
VP --+ v NP

Due to the simplicity of the architecture-the fact that there is only one layer of
modifiable weights-the learned weights can often be interpreted as symbolic rewrite
rules (Figure 4). It is a remarkable achievement that the numerical optimization
framework of neural net learning can be used to discover symbolic rules (see also
Mozer &. Bachrach, 1991).

The first three grammars were successfully learned by the model of Giles et al.
(1990), although the analysis required to interpret the weights is generally more
cumbersome and tentative. The last grammar could not be learned by their model
(Das et al., 1992).

When more demon units are provided to the model than are required for the domain,
the weights tend to be less interpretable, but generalization performance is just as
good. (Of course, this result can hold for only a limited range of network sizes.)
The model also does well with very small training sets (e.g., three positive, three
negative examples for anbn). This is no doubt because the architecture imposes
strong biases on the learning process. We performed some preliminary experiments
with staged training in which the length of strings in the training set was increased
gradually, allowing the model to first learn simple cases and then move on to more
difficult cases. This substantially improved the training time and robustness.

870 Mozer and Das

Although the current version of the model is designed for LR(O) context-free gram­
mars, it can be extended to LR(n) by including connections from the first n com­
posite symbols in the input queue to the demon units. However, our focus is not
necessarily on building the theoretically most powerful formal language recognizer
and learning systemj rather, our primary interest has been on integrating symbol
manipulation capabilities into a neural network architecture. In this regard, the
model makes a clear contribution. It has the ability represent a string of sym­
bols with a single symbol, and to do so iteratively, allowing for the formation of
hierarchical and recursive structures. This is the essence of symbolic information
processing, and, in our view, a key ingredient necessary for structure learning.

Acknowledgements

This research was supported by NSF Presidential Young Investigator award IRI-
9058450 and grant 90-21 from the James S. McDonnell Foundation. Our thanks to
Paul Smolensky, Lee Giles, and J urgen Schmidhuber for helpful comments regarding
this work.

References

Bridle, J. (1990). Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. In D. S. Touretzk,. (Ed.), Adllancu in neural infor.
mation procelling .ydem. J (pp. 211-217). San Mateo, CA: Morgan Kaufmann.

Das, S., Giles, C. L., &t: Sun, G. Z. (1992). Learning context-free grammars: Capabilities and limita­
tions of neural network with an external stack memorJ. In Proceeding. of the Fourteenth Annual
Conference of the Cognitille Science (pp. 791-795). Hillsdale, NJ: Erlbaum.

Giles, C. L., Sun, G. Z., Chen, H. H., Lee, Y. C., &t: Chen, D. (1990). Higher order recurrent networks
and grammatical inference. In D. S. Tourebk,. (Ed.), Adllancu in neural information procelling
.y.tem. J (pp. 380-387). San Mateo, CA: Morgan Kaufmann.

Hinton, G. E. (1988). Representing part-whole hierarchies in connectionist networks. Proceeding. of
the Eighth Annual Conference of the Cognitille Science Society.

Mozer, M. C. (1992). The induction of multiscale temporal structure. In J. E. Mood,., S. J. Hanson, &.
R. P. Lippman (Eds.), Adllancu in neural information procelling .y.tem. IV (pp. 275-282). San
Mateo, CA: Morgan Kaufmann.

Mozer, M. C., &t: Bachrach, J. (1991). SLUG: A connectionist architecture for inferring the structure of
finite-state environments. Machine Learning, 7, 139-160.

Ring, M. (1993). Learning sequential tasks b,. incrementall,. adding higher orders. Thi. 1I0lume.

Rohwer, R. (1990). The 'moving targets' training algorithm. In D. S. Touretzk,. (Ed.), Adllance. in
neural informa.tion procelling .y.tem. J (pp. 558-565). San Mateo, CA: Morgan Kaufmann.

Rumelhart, D. E., Hinton, G. E., &t: Williams, R. J. (1986). Learning internal representations by error
propagation. In D. E. Rumelhart &t: J. L. McClelland (Eds.), Pa.rallel di.tributed procelling: E:z:­
ploration. in the microdructure of cognition. Volume I: Foundation. (pp. 318-362). Cambridge,
MA: MIT Press/Bradford Books.

Rumelhart, D. E. (in press). Connectionist processing and learning as statistical inference. In Y. Chauvin
&t: D. E. Rumelhart (Ed •.), Backpropagation: Theory, architecturu, and application •. Hillsdale,
NJ: Erlbaum.

Schmidhuber, J. (1992). Learning unambiguous reduced sequence descriptions. In J. E. Moody, S. J.
Hanson, &t: R. P. Lippman (Eds.), Adllancu in neural information proceuing .y.tem. IV (pp.
291-298). San Mateo, CA: Morgan Kaufmann.

Stolcke, A., &t: Omohundro, S. (1993). Hidden markov model induction b,. Ba,.esian model merging.
Thi. 1Iolume.

Sun, G. Z., Chen, H. H., Giles, C. L., Lee, Y. C., &t: Chen, D. (1990). Connectionist pushdown automata
that learn context-Cree grammars. In Proceeding. of the International Joint Conference on Neural
Network, (pp. 1-577). Hillsdale, NJ: Erlbaum Associates.

