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Abstract 

We present a local learning rule in which Hebbian learning is 
conditional on an incorrect prediction of a reinforcement signal. 
We propose a biological interpretation of such a framework and 
display its utility through examples in which the reinforcement 
signal is cast as the delivery of a neuromodulator to its target. 
Three exam pIes are presented which illustrate how this framework 
can be applied to the development of the oculomotor system. 

1 INTRODUCTION 

Activity-dependent accounts of the self-organization of the vertebrate brain have 
relied ubiquitously on correlational (mainly Hebbian) rules to drive synaptic learn­
ing. In the brain, a major problem for any such unsupervised rule is that many 
different kinds of correlations exist at approximately the same time scales and each 
is effectively noise to the next. For example, relationships within and between 
the retinae among variables such as color, motion, and topography may mask one 
another and disrupt their appropriate segregation at the level of the thalamus or 
cortex. 

It is known, however, that many of these variables can be segregrated both within 
and between cortical areas suggesting that certain sets of correlated inputs are 
somehow separated from the temporal noise of other inputs. Some form of super­
vised learning appears to be required. Unfortunately, detailed supervision and 
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selection in a brain region is not a feasible mechanism for the vertebrate brain. The 
question thus arises: What kind of biological mechanism or signal could selectively 
bias synaptic learning toward a particular subset of correlations? One answer lies 
in the possible role played by diffuse neuromodulatory systems. 

It is known that multiple diffuse modulatory systems are involved in the self­
organization of cortical structures (eg Bear and Singer, 1986) and some of them 
a ppear to deliver reward and/or salience signals to the cortex and other structures 
to influence learning in the adult. Recent data (Ljunberg, et al, 1992) suggest that 
this latter influence is qualitatively similar to that predicted by Sutton and Ba.rto's 
(1981,1987) classical conditioning theory. These systems innervate large expanses 
of cortical and subcortical turf through extensive axonal projections that originate 
in midbrain and basal forebrain nuclei and deliver such compounds as dopamine, 
serotonin, norepinephrine, and acetylcholine to their targets. The small number of 
neurons comprising these subcortical nuclei relative to the extent of the territory 
their axons innervate suggests that the nuclei are reporting scalar signals to their 
target structures. 

In this paper, these facts are synthesized into a single framework which relates 
the development of brain structures and conditioning in adult brains. We pos­
tulate a modification to Hebbian accounts of self-organization: Hebbian learning 
is conditional on a incorrect prediction of future delivered reinforcement from a 
diffuse neuromodulatory system. This reinforcement signal can be derived both 
from externally driven contingencies such as proprioception from eye movements 
as well as from internal pathways leading from cortical areas to subcortical nuclei. 

The next section presents our framework and proposes a specific model for how 
predictions about future reinforcement could be made in the vertebrate brain uti­
lizing the firing in a diffuse neuromodulatory system (figure 1). Using this model 
we illustrate the framework with three examples suggesting how mappings in the 
oculomotor system may develop. The first example shows how eye movement 
commands could become appropriately calibrated in the absence of visual experi­
ence (figure 3). The second example demonstrates the development of a mapping 
from a selected visual target to an eye movement which acquires the target. The 
third example describes how our framework could permit the development and 
alignment of multimodal maps (visual and auditory) in the superior colliculus. In 
this example, the transformation of auditory signals from head-centered to eye­
centered coordinates results implicitly from the development of the mapping from 
parietal cortex onto the colliculus. 

2 THEORY 

We consider two classes of reinforcement learning (RL) rule: static and dynamic. 

2.1 Static reinforcement learning 

The simplest learning rule that incorporates a reinforcement signal is: 

(1) 
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where, all at times t, Wt is a connection weight, Xt an input measure, Yt an output 
measure, 1't a reinforcement measure, and ex. is the learning rate. 

In this case, l' can be driven by either external events in the world or by cortical 
projections (internal events) and it picks out those correlations between x and Y 
about which the system learns. Learning is shut down if nothing occurs that is 
independently judged to be significant, i.e. events for which l' is O. 

2.2 Dynamic Reinforcement learning -learning driven by prediction error 

A more informative way to utilize reinforcement signals is to incorporate some 
form of prediction. The predictive form of RL, called temporal difference learning 
(TD, Sutton and Barto, 1981,1987), specifies weight changes according to: 

(2) 

where 1't+ 1 is the reward delivered in the next instant in time t + 1. V is called 
a value function and its value at any time t is an estimate of the future reward. 
This framework is closely related to dynamiC programming (Barto et aI, 1989) and 
a body of theory has been built around it. The prediction error [(1"t+l + Vt+ J) - Vt], 
measures the degree to which the prediction of future reward Vt is higher or lower 
than the combination of the actual future reward 1't+ 1 and the expectation of reward 
from time t + 1 onward (Vt +1). 

To place dynamic RL in a biological context, we start with a simple Hebbian rule 
but make learning contingent on this prediction error. Learning therefore slows as 
the predictions about future rewards get better. In contrast with static RL, in a TD 
account the value of l' per se is not important, only whether the system is able to 
predict or anticipate the the future value of r. Therefore the weight changes are: 

~Wt = ex.xtlJt[(1't+l + Vt+l) - Vtl (3) 

including a measure of post-synaptic response, 1)t. 

3 MAKING PREDICTIONS IN THE BRAIN 

In our account of RL in the brain, the cortex is the structure tha t makes predictions of 
future reinforcement. This reinforcement is envisioned as the output of subcortical 
nuclei which deliver various neuromodulators to the cortex that permit Hebbian 
learning. Experiments have shown that various of these nuclei, which have access 
to cortical representations of complex sensory input, are necessary for instrumental 
and classical conditioning to occur (Ljunberg et ai., 1992). 

Figure 1 shows one TD scenario in which a pattern of activity in a region of cortex 
makes a prediction about future expected reinforcement . At time t, the prediction 
of future reward Vt is viewed as an excitatory drive from the cortex onto one or 
more subcortical nuclei (pathway B). The high degree of convergence in B ensures 
that this drive predicts only a scalar output of the nucleus R. Consider a pattern 
of activity onto layer II which provides excitatory drive to R and concomitantly 
causes some output, say a movement, at time t + 1. This movement provides a 
separate source of excitatory drive rt+ 1 to the same nucleus through independent 
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Figure 1: Making predictions about future reinforcement. Layer I is an array of units 
that projects topographically onto layer II. (A) Weights from I onto II develop according to 
equation 3 and represent the value function V t. (B) The weights from II onto R are fixed. The 
prediction of future reward by the weights onto II is a scalar because the highly convergent 
excitatory drive from II to the reinforcement nucleus (R) effectively sums the input. (C) 
External events in the world provide independent eXcitatory drive to the reinforcement nu­
cleus. (D) Scalar signal which results from the output firing of R and is broadcast throughout 
layer II. This activity delivers to layer II the neuromodulator required for Hebbian learning. 
The output firing of R is controlled by temporal changes in its excitatory input and habit­
uates to constant or slowly varying input. This makes for learning in layer II according to 
equation 3 (see text). 

connections conveying information from sensory structures such as stretch recep­
tors (pathway C). Hence, at time t + 1, the excitatory input to R is the sum of 
the 'immediate reward' Tt+ 1 and the new prediction of future reward Vt+ I. If the 
reinforcement nucleus is driven primarily by changes in its input over some time 
window, then the difference between the excitatory drive at time t and t + 1, ie 
[(Tt+1 + Vt+d - Vt] is what its output reflects. 

The output is distributed throughout a region of cortex (pathway D) and permits 
Hebbian weight changes at the individual connections which determine the value 
function Vt. The example hinges on two assumptions: 1) Hebbian learning in the 
cortex is contingent upon delivery of the neuromodulator, and 2) the reinforcement 
nucleus is sensitive to temporal changes in its input and otherwise habituates to 
constant or slowly varying input. 

Initially, before the system is capable of predicting future delivery of reinforcement 
correctly, the arrival of TH 1 causes a large learning signal because the prediction 
error [(Tt+1 + Vt+1) - Vtl is large. This error drives weight changes at synaptic 
connections with correlated pre- and postsynaptic elements until the predictions 
come to a pproximate the actual future delivered reinforcement. Once these pre­
dictions become accurate, learning abates. At that point, the system has learned 
about whatever contingencies are currently controlling reinforcement delivery. For 
the case in which the delivery of reinforcement is not controlled by any predictable 
contingencies, Hebbian learning can still occur if the fluctuations of the prediction 
error have a positive mean. 
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Figure 2: Upper layer is a 64 by 64 input array with 3 by 3 center-surround filters at each 
position which projects topographically onto the middle layer. The middle layer projects 
randomly to four 4 X 4 motoneuron layers which code for an equilibrium eye position signal, 
for example, through setting equilibrium muscle tensions in the 4 muscles. Reinforcement 
signals originate from either eye movement (muscle' stretch') or foveation. The eye is moved 
according to h = (T - t)g. " = (u - d)g where r,l,u,d are respectively the average activities 
on the right, left, up, down motoneuron layers and 9 is a fixed gain parameter. hand" are 
linearly combined to give the eye position. 

In the presence of multiple statistically independent sources of control of the rein­
forcement signal (pathways onto R), the system can separately 'learn away' the 
contingencies for each of these sources. This passage of control of reinforcement 
delivery can allow the development of connections in a region to be staged. Hence, 
control of reinforcement can be passed between contingencies without supervi­
sion. In this manner, a few nuclei can be used to deliver information globally about 
many different circumstances. We illustrate this point below with development of 
a sensorimotor mapping. 

4 EXAMPLES 

4.1 Learning to calibrate without sensory experience 

Figure 2 illustra tes the architecture for the next two exam pIes. Briefly, cortical layers 
drive four 'motor' layers of units which each provide an equilibrium command to 
one of four extraocular muscles. The mapping from the cortical layers onto these 
four layers is random and sparse (15%-35% connectivity) and is plastic according 
to the learning rule described above. Two external events control the delivery of 
reinforcement: eye movement and foveation of high contrast objects in the visual 
input. The minimum eye movement necessary to cause a reinforcement is a change 
of two pixels in any direction (see figure 3). 

We begin by demonstrating how an unbalanced mapping onto the motoneuron 
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Figure 3: Learning to calibrate eye movement commands. This example illustrates how 
a reinforcement signal could help to organize an appropriate balance in the sensorimotor 
mapping before visual experience. The dark bounding box represents the 64x64 pixel 
working area over which an 8x8 fovea can move. A Foveal position during the first 400 
cycles of learning. The architecture is as in figure 2, but the weights onto the right/left and 
up/down pairs are not balanced. Random activity in the layer providing the drive to the 
motoneurons initially drives the eye to an extreme position at the upper right. From this 
position, no movement of the eye can occur and thus no reinforcement can be delivered 
from the proprioceptive feedback causing all the weights to begin to decrease. With time, 
the weights onto the motoneurons become balanced and the eye moves. B Foveal position 
after 400 cycles of learning and after increasing the gain 9 to 10 times its initial value. After 
the weights onto antagonistic muscles become balanced, the net excursions of the eye are 
small thus requiring an increase in 9 in order to allow the eye to explore its working range. 
C Size of foveal region relative the working range of the eye. The fovea covered an 8x8 
region of the working area of the eye and the learning rate ex was varied from 0.08 to 0.25 
without changing the result. 

layers can be automatically calibrated in the absence of visual experience. Imagine 
that the weights onto the right/left and up/down pairs are initially unbalanced, 
as might happen if one or more muscles are weak or the effective drives to each 
muscle are unequal. Figure 3, which shows the position of the fovea during 
learning, indicates that the initially unbalanced weights cause the eye to move 
immediately to an extreme position (figure 3, A). 

Since the reinforcement is controlled only by eye movement and foveation and 
neither is occurring in this state, Tt+ 1 is roughly O. This is despite the (randomly 
generated) activity in the motoneurons continually making predictions that rein­
forcement from eye-movement should be being delivered. Therefore all the weights 
begin to decrease, with those mediating the unbalanced condition decreasing the 
fastest, until balance is achieved (see path A). Once the eye reaches equilibrium, 
further random noise will cause no mean net eye movement since the mappings 
onto each of the four motoneuron layers are balanced. The larger amplitude eye 
movements shown in the center of figure 3 (labeled B) are the result of increasing 
the gain g (figure 2). 
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Figure 4: Development of foveation map. The map 
after 2000 learning cycles shows the approximate eye 
movement vector from stimulation of each position in 
the visual field. Lengths were normalized to the size 
of the largest movement. The undisplayed quadrants 
were qualitatively similar. Note that this scheme does 
not account for activity or contrast differences in the 
input and assumes that these have already been nor­
malized. Learning rate = 0.12. Connectivity from the 
middle layer to the motoneurons was 35% and was ran-
domized. Unlike the previous example, the weights 
onto the four layers of motoneurons were initially bal-
anced. 
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4.2 Learning a foveation map with sensory experience 
Although reinforcement would be delivered by foveation as well as successful 
eye-movements, the former would be expected to be a comparatively rare event. 
Once equilibrium is achieved, however, the reinforcement that comes from eye 
movements is fully predicted by the prior activity of the motoneurons, and so other 
contingencies, in this case foveation, grab control of the delivery of reinforcement. 
The resulting TD signals now provide information about the link between visual 
input on the top layer of figure 2 and the resulting command, and the system learns 
how to foveate correctly. Figure 4 shows the motor map that has developed after 
2000 learning cycles. In the current example, the weights onto the four layers of 
motoneurons initially were balancedand the gain g was 10 times larger than before 
calibration (see figure 3). This learning currently assumes that some cortical area 
selects the salient targets. 
4.3 Learning to align separate mappings 
In the primate superior colliculus, it is known that cells can respond to multiple 
modalities including auditory input which defines a head centered coordinate sys­
tem. Auditory receptive fields shift their position in the colliculus with changing 
eye position suggesting the existence of a mechanism which maintains the regis­
tration between auditory and visual maps (Jay and Sparks, 1984). Our framework 
suggests a developmental explanation of these findings in terms of an activity­
dependent self-organizing principle. 

Consider an intermediate layer, modeling the parietal cortex, which receives sig­
nals representing eye position (proprioception), retinal position of a visual target 
(selected visual input), and head position of an auditory target and which projects 
onto the superior colliculus. This can be visualized using figure 2 with parietal cor­
tex as the top layer and the ,colliculus as the drive to the motoneurons. As before 
(figure 2), assume that foveation of a target, whether auditory or visual, delivers 
reinforcement and that learning in this layer and the colliculus follows equation 3. 
In a manner analagous to the example in figure 4, those combinations of retinal, eye 
position, and head centered signals in this parietal layer which predict a foveating 
eye movement are selected by this learning rule. Hence, as before, the weights 
from this layer onto the colliculus make predictions about future reinforcement. In 
figure 4, a foveation map develops which codes for eye movements in absolute co­
ordinates relative to some equilibrium position of the eye. In the current example, 
such a foveation map would be inappropriate since it requires persistent activity 
in the collicular layer to maintain a fixed eye position. Instead, the collicular to 
motoneuron mapping must represent changes in the balance between antagonistic 
muscles with some other system coding for current eye position. 
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Why would such an initial architecture, acting under the aegis of the learning rule 
expressed in equation 3, develop the collicular mappings observed in experiments? 
Those combinations of signals in the parietal layer that correctly predict foveation 
have their connections onto the collicular layer stabilized. In the current repre­
sentation, foveation of a target will occur if the correct change in firing between 
antagonistic motoneurons occurs. After learning slows, the parietal layer is left 
with cells whose visual and auditory responses are modulated by eye position 
signals. In the collicular layer, the visual responses of a cell are not modulated by 
eye position signals while the head-centered auditory responses are modulated by 
eye position. 

The reasons for these differences in thecolliculus layer and parietal layer are implicit 
in the new motoneuron model and the way the equation 3 polices learning. The 
collicular layer is driven by combinations of the three signals and the learning rule 
enforces a common frame of reference for these combinations because foveation 
of the target is the only source of reinforcement. Consider, for example, a visual 
target on a region of retina for two different eye positions. The change in the 
balance between right and left muscles required to foveate such a retinal target is 
the same for each eye position hence the projection from the parietal to collicular 
layer develops so that the influence of eye position for a fixed retinal target is 
eliminated. The influence of eye position for an auditory target remains, however, 
because successful foveation of an auditory target requires different regions of the 
collicular map to be active as a function of eye position. 

These examples illustrate how diffuse modulatory systems in the midbrain and 
basal forebrain can be employed in single framework to guide activity-dependent 
map development in the vertebrate brain. This framework gives a natural role to 
such diffuse system for both development and conditioning in the adult brain and 
illustrates how external contingencies can be incorporated into cortical representa­
tions through these crude scalar signals. 
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