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Abstract 

In this paper, we discuss on-line estimation strategies that model 
the optimal value function of a typical optimal control problem. 
We present a general strategy that uses local corridor solutions 
obtained via dynamic programming to provide local optimal con­
trol sequence training data for a neural architecture model of the 
optimal value function. 

ION-LINE ESTIMATORS 

In this paper, the problems of adaptive control using neural architectures are ex­
plored in the setting of general on-line estimators. 'Ve will try to pay close attention 
to the underlying mathematical structure that arises in the on-line estimation pro­
cess. 

The complete effect of a control action Uk at a given time step t/.; is clouded by 
the fact that the state history depends on the control actions taken after time 
step tk' So the effect of a control action over all future time must be monitored . 
Hence, choice of control must inevitably involve knowledge of the future history 
of the state trajectory. In other words, the optimal control sequence can not be 
determined until after the fact. Of course, standard optimal control theory supplies 
an optimal control sequence to this problem for a variety of performance criteria. 
Roughly, there are two approaches of interest: solving the two-point boundary value 
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problem arising from the solution of Pontryagin 's maximum or minimum principle or 
solving the Hamilton-J acobi-Bellman (HJB) partial differential equation. However, 
the computational burdens associated with these schemes may be too high for real­
time use. Is it possible to essentially use on-line estimation to build a solution 
to either of these two classical techniques at a lower cost? In other words, if TJ 
samples are taken of the system from some initial point under some initial sequence 
of control actions, can this time series be use to obtain information about the true 
optimal sequence of controls that should be used in the next TJ time steps? 

We will focus here on algorithm designs for on-line estimation of the optimal con­
trol law that are implement able in a control step time of 20 milliseconds or less. 
vVe will use local learning methods such as CMAC (Cerebellar Model Articulated 
Controllers) architectures (Albus, 1 and W. Miller, 7), and estimators for character­
izations of the optimal value function via solutions of the Hamilton-Jacobi-Bellman 
equation, (adaptive critic type methods), (Barto, 2; Werbos, 12). 

2 CLASSICAL CONTROL STRATEGIES 

In order to discuss on-line estimation schemes based on the Hamilton- Jacobi­
Bellman equation, we now introduce a common sample problem: 

where 

J(x, u, t) 

Subject to: 
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y(s) 

u(s) 
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Here y and u are the state vector and control vector of the system, respectively; U is 
the space of functions that the control must be chosen from during the minimization 
process and ( 4) - ( 6) give the initialization and constraint conditions that the 
state and control must satisfy. The set r represents a target constraint set and 
dist(y(tf), r) indicates the distance from the final state y(tf) to the constraint set 
r. The optimal value of this problem for t.he initial state x and time t will be 
denoted by J(x, t) where 

J(x, t) minJ(x,u,t). 
u 
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It is well known that the optimal value function J(x, t) satisfies a generalized partial 
differential equation known as the Hamilton-J acobi-Bellman (HJB) equation. 

aJ(x, t) 
at 

J(x,t,) 

. {( ) aJ(x, t) ( )} m~n L x, u, t + ax I x, u, t 

dist(x, f) 

In the case that J is indeed differentiable with respect to both the state and time 
arguments, this equation is interpreted in the usual way. However, there are many 
problems where the optimal value function is not differentiable, even though it 
is bounded and continuous. In these cases, the optimal value function J can be 
interpreted as a viscosity solution of the HJB equation and the partial derivatives 
of J are replaced by the sub and superdifferentials of J (Crandall, 5). In general, 
once the HJB equation is solved, the optimal control from state x and time t is then 
given by the minimum condition 

. { aJ(x,t) ( )} 
U E argm~n L(x,u,t)+ ax I x,u,t 

If the underlying state and time space are discretized using a state mesh of resolution 
r and a time mesh of resolution s, the HJB equation can be rewritten into the form 
of the standard Bellman Principle of Optimality (BPO): 

where X(Xi, u) indicates the new state achieved by using control u over time interval 
[tj,tj+d from initial state Xi. In practice, this equat.ion is solved by successive 
iterations of the form: 

where T denotes the iteration cycle and the process is started by initializing 
J~~ (Xi, tj) in a suitable manner. Generally, the iterations continue until the values 
J;tl(Xi,tj) and J;tl(Xi,tj) differ by negligible amounts. This iterative process is 
usually referred to as dynamic programming (DP). Once this iterative process con­
verges, let Jr~(Xi,tj) = limT->ooJ:~, and consider linl(r,s)->(O,O) Jrs(xi,tj), where 
(xi, tj) indicates that the discrete grid points depend on the resolution (r, s). In 
many situations, this limit gives the viscosity solution J(x, t) to the HJB equation. 

Now consider the problem of finding J(x,O). The Pontrya.gin minimum principle 
gives first order necessary conditions that the optimal state x and costate p variables 
must satisfy. Letting fl(x, u, p, t) = L(x, u, t) + pT I(x, u, t) and defining 
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H(x,p, t) min H(x, u, p, t), 
u 

(7) 

the optimal state and costate then must satisfy the following two-point boundary 
value problem (TPBVP): 

'(t) - oH(x,p,t) x - op , 

x(O) = x, 

p'(t) = _ aH~;p,t) 
p(tj) = 0 

(8) 

and the optimal control is obtained from ( 7) once the optimal state and costate 
are determined. Note that ( 7) can not necessarily be solved for the control u in 
terms of x and p, i.e. a feedback law may not be possible. If the TPBVP can 
not be solved, then we set J(x,O) = 00. In conclusion, in this problem, we are led 
inevitably to an optimal value function that can be poorly behaved; hence, we can 
easily imagine that at many (x, t), ~; is not available and hence J will not satisfy 
the HJB equation in the usual sense. So if we estimate J directly using some form 
of on-line estimation, how can we hope to back out the control law if ~; is not 
available? 

3 HJB ESTIMATORS 

A potential on-line estimation technique can be based on approximations of the 
optimal value function. Since the optimal value function should satisfy the HJB 
equation, these methods will be grouped under the broad classification HJD esti­
mators. 

Assume that there is a given initial state Xo with start time O. Consider a local 
patch, or local corridor, of the state space around the initial state xo, denoted by 
n(xo). The exact size ofO(xo) will depend on the nature of the state dynamics and 
the starting state. If O( xo) is then discretized using a coarse grid of resolution r 
and the time domain is discretized using resolution s, an approximat.e dynamic pro­
gramming problem can be formulated and solved using the BPa equations. Since 
the new states obtained via integration of the plant dynamics will in general not 
land on coarse grid lines, some sort of interpolation must be used to assign the 
integrated new state value an appropriate coarse grid value. This can be done using 
the coarse encoding implied by the grid resolution r of O(xo). In addition, multiple 
grid resolutions may be used with coarse and fine grid approximations interacting 
with one another as in multigrid schemes (Briggs, 3). The optimal value function 
so obtained will be denoted by Jr~(Zi,tj) for any discrete grid point Zi E O(xo) and 
time point t j. This approximate solution also supplies an estimate of the optimal 
control sequence (u*)£j-l = (u*)'j-l(Zi,tj)' Some papers on approximate dynamic 
programming are (Peterson, 8; (Sutton, 10; Luus, 6). It is also possible to obtain 
estimates of the optimal control sequences, states and costates using an 7J step look­
ahead and the Pontryagin minimum principle. The associated two point boundary 
value problem is solved and the controls computed via Ui E arg minu H(x;, u, pi, ti) 
where (x*)ri and (P*)ri are the calculated optimal state and costate sequences re­
spectively. This approach is developed in (Peterson, 9) and implemelltated for 
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vibration suppression in a large space structure, by (Carlson, Rothermel and Lee, 
4) 

For any Zi E n(xo), let (u){j-1 - (u)J- 1(Zi' tj) be a control sequence used from 
initial state Zi and time point tj. Thus Uij is the control used on time interval 

[tj,tj+1] from start point Zi. Define zl/1 = Z(Zi,Uij,tj), the state obtained by 
integrating the plant dynamics one time step using control Uij and initial state Zi" 
Then Ui,j+1 is the control used on time interval [tj+1, tj+2] from start point zl/l 

and the new state is zl/2 = z(zl/l, Ui,j+l, ij+d; in general, Ui,j+k is the control 

used on time interval [tj+k, tj+k+1] from start point zl/k and the new state is 
j+k+1 - (j+k t) h j-Zij = Z Zij ,Ui,j+k, j+k , were Zij = Zi· 

Let's now assume that optimal control information Uij (we will dispense with the 
superscript * labeling for expositional cleanness) is available at each of the discrete 
grid points (Zi, tj) E n(xo). Let <Prs(Zi, tj) denote the value of a neural architecture 
(CMAC, feedforward, associative etc.) which is trained as follows using this optimal 
information for 0 ~ k < T} - j - 1 (the equation below holds for the converged 
value of the network's parameters and the actual dependence of the network on 
those parameters is notationally suppressed): 

·+k "+k+l "+k <Prs (zfj ,tj+k) = e<Prs (zfj ,tj+k+d + (~(zfj ,Ui,j+k) (9) 

where 0 < e, ( ~ 1 and we define a typical reinforcement function ~ by 

if j ~ k < T} - j - 1 
if k = T} - 1 

(10) 

(11) 

For notational convenience, we will now drop the notational dependence on the time 
grid points and simply refer to the reinforcement by ~(zf/k, Ui,j+k) 

Then applying ( 9) repeatedly, for any 0 ~ p ~ '1] - i, 

p-1 

e <Prs (zf/P, t j+p ) + ( E e 3i(zf/k, Ui,j+k) (12) 
k=O 

Thus, the function wr .• can be defined by 
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where the term uif7 will be interpreted as Uj,1}-1. 

It follows then that since Uij is optimal, 

Clearly, the function <Prs(Zi, tj) = Wrs(Zi' tj, 1, 1) estimates the optimal value 
Jrs (Zi, tj) itself. (See, Q-Learning (Watkins, 11». 
An alternate approach that does not model J indirectly, as is done above, is to 
train a neural model <Prs(Zi,tj) directly on the data J(Zi,tj) that is computed in 
each local corridor calculation. In either case, the above observations lead to the 
following algorithm: 

Initialization: 
Here, the iteration count is r = O. For given starting state Xo and local look 
ahead of 7J time steps, form the local corridor O(xo) and solve the associated 
approximate BPO equation for Jrs(Zi, tj). Compute the associated optimal 
control sequences for each (Zi,tj) pair, (u*){j-1 = (u*)1- 1(Zi,tj)' Initialize 
the neural architecture for the optimal value estimate using cI>~8(Zi' tj) = 
J r 8 (Zi , t i)' 

Estilnate of New Optimal Control Sequence: 
For the next TJ time steps, an estimate must be made of the next optimal 
control action in time interval [t f7 +k, t f7 +k+1]' The initial state is any Zi in 
O( xf7) (xf7 is one such choice) and the initial time is tf7' For the time interval 
[tf7, t f7 +1], if the model <P~8 (Zi, tj) is differentiable, the new control can be 
estimated by 

{ 
L(zf7,u,tf7)(tf7+1 -tTl) } 

Uf7 +1 E arg ~in + a:.:. (zf7' tf7) 
f(zf7,u,t f7 )(t1}+l -tf7) 

For ease of notation, let Zf7+1 denote the new state obtained using the 
control Uf7 +1 on the interval [tf7' t f7 H]' Then choose the next control via 

Clearly, if Zf7+ k denote the new state obtained using the control ttf7 +k-1 on 
the interval [t,/+k, t f7 +k+1], the next control is chosen to satisfy 

E 
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Alternately, if the neural architecture is not differentiable (that is 0:;, is 
not availa.ble), the new control action can be computed via 

E 

Update of the Neural Estimator: 
The new starting point for the dynamics is now x1/ and there is a new 
associateclloca.l corridor n( x1/). The neural estimator is then updated using 
either the HJB or the BPa equations over the local corridor n(x1/). Using 
the BPa equations, for all Zi E n(x1/) the updates are: 

where (it )1- 1 indicates the optimal control estimates obtained in the pre­
vious algorithm step. Finally, using the HJB equation, for all Zi E n(x1/) 
the updates are: 

{ 
L( Zi, u, t1/+1) (t77+1 +1 - t'I+1) } 

~~s (Zi, t 77+1+1) + mJn + a:;, (Zi, t 77+i) 
!(Zi,u,t77 +i)(t77 +i+1 -t77 +i) 

Comparison to BPO optimal control sequence: 
Now solve the associated approximate BPa equation for each Zi in the local 
corridor n(x1/) for Jrs(Zi' t 77 +j). Compute the new approximate optimal 
control sequences for each (Zi' t77 +j) pair, (u* )~~j 1 = (u* )~~j 1 (Zi, t77+i) and 

compare them to the estimated sequences (it )~~j 1. If the discrepancy is 
out of tolerance (this is a design decision) initialize the neural architecture 
for the optimal value estimate using ~~s(Zi,t'1+i) = Jrs (Zi,t 77 +i). If the 
discrepancy is acceptable, terminate the BPa approximation calculations 
for M future iterations and use the neural architectures alone for on-line 
estimation. 

The determination of the stability and convergence properties of anyon-line approx­
imation procedure of this sort is intimately connected with the the optimal value 
function which solves the generalized HJB equation. We conjecture the following 
limit converges to a viscosity solution of the HJB equation for the given optimal 
control problem: 

J(x, t) 

Further, there are stability questions and there are interesting issues relating to the 
use of multiple state resolutions rl and r2 and the corresponding different approx­
imations to J, leading to the use of multigrid like methods on the HJ B equation 
(see, for example, Briggs, 3). Also note that there is an advantage to using CMAC 
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architectures for the approximation of the optimal value function J j since J need 
not be smooth, the CMAC's lack of differentiability wit.h respect to its inputs is not 
a problem and in fact is a virtue. 
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